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Introduction 
 

itizen science (CS) has become of significant 
importance over the last decade in ecology1. 
CS is usually defined as the practice of 

engaging the public in a project that produces 
reliable data and information usable by scientists 
and/or decision-makers2. Such data are now 
widespread in the fields of climate change, 
conservation biology and population ecology. One 
advantage of CS is that volunteers, in contrast with 
costly scientific monitoring programs, can prospect 
effectively large geographic scales1,3. Although 
several methods exist to improve data collection by 
volunteers (e.g. training or validation by experts)1,3,4, 

questions are often raised about the quality of CS 
data. Even though datasets produced by CS can be of 
high quality1,3,5, the same accuracy (i.e. degree to 
which observations are correct3) as in scientific 
protocols is difficult to reach. For example, species 
misidentification is a common shortcoming in CS 
datasets because it is often more difficult for a 
volunteer to identify a species with certainty than for 
a professional scientist3. Recent works have 
underlined the importance of accounting for 
misidentification in studies on species distribution6,7. 
Besides, even in the case of scientific surveys, it is 
not always possible to detect a species where it is 
present (i.e. imperfect detection)6,7. Being aware of 
these difficulties, a robust statistical framework is 
required to account for these uncertainties1,3,4. Here, 
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we used the case study of the recolonization of grey 
wolves in France to showcase a recent statistical 
approach that allows inferring the distribution of a 
species while accounting for imperfect detection and 
misidentifications6,8. 
 Grey wolves (Canis lupus) have been 
extirpated from France in the 30’s8,9. They have 
persisted in Italy and came back to the Mercantour 
National Park in 19929. From there, the population 
gradually expanded in size and space throughout the 
country. After colonizing most of the suitable habitat 
in the Alps, they reached the Massif Central, the 
Pyrenees Mountains and settled in the Vosges (north-
east of France) in 20119,10,11. They now occupy a 
range between 30,000 and 50,000km² across the 
country for approximatively 292 (204; 397) 
individuals11,12. Due to its impact on livestock and its 
protected status, the species is associated with 
conflicts involving political and economic 
stakeholders13. In this context, reliable information 
on wolf distribution is needed to inform 
management. However, the efficient monitoring of 
large carnivores is difficult, wolves being no 
exception12,1413. Elusive behaviors together with low 
densities make them hard to detect9,10,12 and 
resemblance with dogs prone to misidentification. In 
France, wolf monitoring relies on a network of 
trained citizen scientists who collect signs of 
presence of the species. These data are categorized as 
certain (no misidentification) or uncertain after going 
through a validation procedure by experts. A 
previous study used the certain data to build a 
species distribution model and account for imperfect 
detection11. Here, we developed a dynamic 
occupancy model including uncertain signs of 
presence therefore using the whole dataset. We had 
three objectives. First, we assessed the impact of 
adding uncertain detections in terms of model 
prediction and compared our results to those 
obtained when using certain data only. Second, we 
explored the issue of CS data quality. To do so, we 
tested whether professional observers were better at 
detecting the species than amateurs. We also tested 
whether the presence of the species in the 
administrative department may affect the detection of 
the species elsewhere in the area. Third, we assessed 
what the drivers of colonization were, and if they 
were different from a previous analysis11, depending 
on whether we included uncertain data or not. 

Methods 
Study area and data collection 
 We used detections of the grey wolf (Canis 
lupus) made by the Wolf-Lynx network of the 
French National Game and Wildlife Agency (Office 
National de la Chasse et de la Faune Sauvage, 
ONCFS) between 1994 and 2016 in France. This 
network is composed of both professional and non-
professional observers. From a few hundred in 1994, 
the network has grown up to 3083 participants in 
2016. Observers are from different socio-
professional categories but all are trained during a 3-
day course led by the ONCFS13,15. Training is known 
to improve observers accuracy1,3. Every wolf 
detection is coupled with a report that follows a 
standard procedure documenting, among others, GPS 
position and date15. Based on this report, wolf 
experts from the ONCFS assign the detection to one 
of the three categories: (i) ‘wolf confirmed’ (e.g. 
direct sighting with photo, fresh track, feces, etc.), 
(ii) ‘wolf possible’ (e.g. blurred photo, incomplete 
track, testimony, etc.), and (iii) ‘wolf rejected’ (e.g. 
inadequate data or obviously not a wolf) and thus 
excluded from this study13,15. 
 
Occupancy models 
 Occupancy models aim at predicting the 
distribution of a species from repeated 
observations14,15. One advantage of occupancy 
models is their ability to deal with species imperfect 
detection (i.e. false-negatives, we do not detect the 
species although it is present)16. Here, we used 
dynamic occupancy models14,17,16 to study, besides 
occupancy, range dynamics through colonization and 
extinction. We defined sampling units (i.e. a site) as 
10x10km cells11. An important assumption of 
occupancy models is that the ecological state of the 
site (i.e. occupied or non-occupied by the species) 
remains unchanged between surveys within a season. 
Thus, we restricted our dataset to detections made 
during winter (i.e. between the 1st of December and 
the 31st of March), which corresponds to the period 
between the two peaks of dispersal in spring and fall 
where individuals move relatively little11,12.  
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 We used a Hidden Markov model (HMM) 
formulation of occupancy models (Fig. 1)16. Each 
site can transit between two ecological states (i.e. 
“occupied” or “unoccupied”) following a Markov 
process. Conditional on the ecological state, three 
possible observations can be made on a site: “certain 
detection” (from ‘wolf confirmed’ signal), “uncertain 
detection” (from ‘wolf possible’ signal), and “no 
detection” (when no detection or only ‘wolf rejected’ 
signals have been collected). This framework allows 
estimating three biological parameters while 
correcting for imperfect detection: (i) colonization 
probability (γ), probability that an empty site 
becomes occupied the next year, (ii) extinction 
probability (ε), probability that an occupied site 
becomes unoccupied the next year, and (iii) 
occupancy probability (φ), probability that the site is 
occupied. The three parameters estimated every year 
for every site. Regarding the observation process, 
although certain detections are necessarily linked to 
occupied sites, uncertain detections are possibly 
generated from one of the two states. An uncertain 
detection can occur on an occupied but also on an 
unoccupied site – i.e. a false positive due to 
misidentification. We resorted to three parameters to 
model the observation process: (i) P10, probability of 
incorrectly detecting the species at an unoccupied 
site, (ii) P11, probability of detecting the species at an 
occupied site, and (iii) δ, conditional on a detection 

made on an occupied site, the probability that the 
detection is certain6. We estimated the parameters in 
a Bayesian framework with Markov chain Monte 
Carlo simulations using JAGS18. For readability, we 
refer to the models as CU for ‘Certain and Uncertain 
detections’ and CO for the model with ‘Certain 
detections’ only. 
 
Sampling effort and environmental covariates 
 Exhaustively monitoring elusive species such 
as wolves is almost impossible following 
standardized procedures because wide territories 
occupied by the species cannot simply be 
prospected4,14,12. At the country level, we only had 
opportunistic data, i.e. detections with no associated 
sampling effort. Assuming that detectability is the 
same over the whole study area would lead to bias 
(e.g. overestimating detectability when prospection is 
high). To address this issue, we accounted for the 
effect of the sampling effort on wolf detectability. 
We built a circular buffer around the home of every 
observer depending on his/her socio-professional 
category (a proxy for the prospection area), and 
calculated the number of observers per site11. This 
covariate was therefore season and site specific. We 
forced the detection on sites where the sampling 
effort was null to be 0. We also considered six 
environmental covariates possibly affecting the 

 

Figure 1: Hidden Markov model formulation of the dynamic occupancy models presented in this study. A. 
The model used in Louvrier et al. (2017)11 using only data from certain detection of the species (CO model). B. The 
adaptation of model A, that includes data coming from uncertain detection (CU model), thus accounting for species 
misidentification. Red arrows and red squares represent the added elements of CU model compared to the CO 
model. The ecological (Markovian) process describing the dynamic of occupancy of a site is the yellow part; the site 
can be either ‘occupied’ or ‘unoccupied’ by the species and can transit between these two states following 
transitions probabilities. Parameters are the following ones: ε is the extinction probability that a site transits from 
‘occupied’ to ‘unoccupied’ the next year; γ is the colonization probability that an ‘unoccupied’ site becomes 
‘occupied’ the next year. In blue or red, the detection process involves three possible events when prospecting the 
site: ‘reliable detection’, ‘uncertain detection’, and ‘no detection’. Three parameters permit to link the underlying 
ecological state of a site to the detection event: P10 is the probability of incorrectly detecting the species when the 
site is unoccupied (false positives); P11 is the probability of detecting the species when the site is occupied; δ is the 
probability that the observation is certain conditional on a detection made on an occupied site. 
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colonization parameter for each site (γ), namely the 
proportion of farmland cover, mean altitude, 
proportion of forest cover, proportion of altitude 
higher than 2500m, proportion of rock cover, 
distance to the closest barrier (e.g. highway, river, 
etc). We extracted these data from the CORINE 
Land Cover database (U.E – SOeS, Corine Land 
Cover, 200619) and from the IGN BD_ALTIR 
database (250m resolution)20. We also used road 
density that we expected to affect positively 
detectability11.  
 Because a site with occupied surrounding 
cells had greater chances of being itself occupied (i.e. 
established packs act as a source of dispersers11,12), 
we built two covariates to account for spatial 

autocorrelation between sites11. We expected 
presence of individuals at short-distance (i.e. number 
of occupied contiguous site) and long-distance (i.e. 
number of occupied site in a 150km radius area, 
value chosen based on observation of wolves 
dispersal in the western Alps11,21) to have a positive 
effect on the occupancy probability of a site. 
 
Investigating citizen science 
 Besides accounting for misidentification and 
including uncertain detections, the originality of our 
work lies in that we considered two covariates based 
on the CS literature to explore and characterize the 
observation process. First, we assessed the effect of 

 

Figure 2: Characteristics of the observation network. A: Maps of the detections made respectively in 2006, 2010, 
and 2016 by the network. Red dots are certain detections while green ones are uncertain detections. Red dots are 
plotted above green dots because on sites where both detections occur, we kept the most certain one (i.e. red dots). B: 
Maps of the sampling effort (Seff) calculated respectively for 2006, 2010, and 2016. Sampling effort is the number of 
observers per site. C: Maps of the proportion of professional observers per site (%Pro) for years 2006, 2010, and 
2016. respectively.  
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professional vs. amateur on the observation process. 
We built a covariate distinguishing professional 
observers (i.e. ONCFS, Forest National Office or 
National Parks, National Reserves, Regional Parks) 
from amateurs (i.e. other socio-professional 
categories). To do so, we considered the proportion 
of professional observers per site and we expect this 
covariate to affect both detectability (i.e. P10 and P11) 
and reliability of the collected sign (i.e. δ). Second, 
we investigated whether the presence of a wolf in the 
administrative department influenced the 
detectability of the species elsewhere in the 
department (i.e. binary covariate that takes value 1 if 
wolf has officially been declared present and 0 
otherwise). For example, can a detection of a wolf in 
the Aubrac forest in Lozère department increase the 
detection of the species in another area of the 
department? The scale was chosen to reflect wolf-
related issue (i.e. depredation of livestock, hunting, 
network deployment, etc.) that are managed at the 
administrative department level. 
 
 

Covariates selection 
 Our model included 36 different covariates 
possibly affecting the six parameters. First, we 
checked for correlation among these covariates with 
Pearson tests. Due to the prohibitive number of 
possible models (over 109) and the computational 
burden (a model took 15 days to fit with a single 
MCMC chain), we could not test for every 
combination of covariates. We therefore fit a global 
model including all relevant covariates and 
considered that a covariate had an effect if the 95% 
credible interval of its corresponding parameter did 
not include 0.  
 
Map of differences 

We calculated the occupancy probability for 
each site and considered the difference between CO 
and CU model estimates. A difference close to 1 
suggested that adding uncertain data would lead us to 
conclude for the presence of wolf while using only 
certain data would not, and a difference close to -1 
meant that CO model predicted wolf presence while 
CU did not.   

Table 1: List of the covariates tested on the parameters of the dynamic occupancy model. CO model 
represents the model including “Certain detections Only”, while CU model included “Certain and Uncertain 
detections”. Regarding parameters: γ is the colonization probability, ε is the local extinction probability, P10 is the 
probability of incorrectly detecting the species, P11 is the probability of correctly detecting the species (certain or 
uncertain detection). Given that a detection was made on an occupied site, δ is the probability that the detection is 
certain, p  is the detectability for the CO model. Parameters estimates are those from the CU model and are given 
under the form of posterior means, with standard deviations between parentheses. 
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Results 
Covariate selection and effect on parameters 

We found no correlation among the candidate 
covariates. The covariates ‘proportion of rock cover’, 
‘distance to the closest barrier’ had non-significant 
effect on colonization; similarly, ‘year effect’ had no 
effect on local extinction (Table 1). The other 
environmental covariates, short and long-distance 
autocorrelation had a significant effect (Table 1). 
Overall, we found similar patterns to a previous 
study using certain data only11. Regarding the 
observation process, the 'proportion of professional 
observers’ had no effect on detectability (i.e. no 
effect on both P11 and P10) while it positively 
affected δ (Table 1) and ‘road density’ did not impact 
the probability of producing false positives. 

However, increasing road density was associated 
with increasing detectability at occupied sites (Table 
1). Presence of wolf in the administrative department 
had a positive impact on detectability. Sampling 
effort presented strong heterogeneity throughout our 
study area (i.e. 1 to 151 observers per site) and 
increasing sampling had a positive impact on P10, P11 
and δ (Table 1). P11 had stronger importance than P10 
i.e. 0.17 (0.13; 0.24) vs 0.006 (0.003; 0.008), 
meaning that few errors outcome from adding 
uncertain data. δ had a mean value of 0.93 (0.86; 
0.99).   
 
Model differences 
Predictions from both models were relatively similar. 
Among our 3547 sites, 95% of the sites x years 
occasions had a difference in predicted occupancy 

 

Figure 3: Differences in occupancy-related estimates between model including uncertain detections (CU) 
and model using certain detections only (CO). For each figure, was involved the difference between the latent 
states (1 occupied or 0 for non-occupied) estimated from model CU and model CO. A. Growth rate – the sum of 
the number of sites estimated as occupied by both CU and CO model for each year. Colored background represent 
the 95% confidence interval. The red line gives the number of sites where a certain detection was made. B. 
Distribution of the differences in occupancy – vertical red lines include 95% of the estimates, showing that models 
differ by less than 10%. C. Maps of occupancy differences between CU and CO models in 2006, 2010, and 2016 – 
Blue squares represent sites where CU model predicts wolf presence while CO does not. Red squares are the 
opposite. 
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probability smaller than 10% (Fig. 3A, 3B). Among 
occasions with differences in prediction over 10%, 
there were as many positive values as negative ones 
(Student test, p = 0.5459, NS). However, when 
looking at maps of model differences, there were 
geographical heterogeneities. CU model tended to 
predict more wolf presence in the colonization front 
(e.g. Jura, Vosges) than did the CO model, which 
predicted more presence in the core of wolf territory 
(e.g. Southern Alps, Fig. 3C). 

Discussion 
Making sense of citizen science data  
 For many large carnivore monitoring 
programs in Europe, data collected on species 
distribution often rely on opportunistic detections 
made by volunteers and professional observers. 
However, as in every CS program, the evaluation of 
the quality of collected data is a major concern1,3,22. 
Several studies have assessed whether professional 
observers displayed higher reliability than amateurs 

in data collection3,4. In most cases where it has been 
tested, the performance of volunteers was similar to 
that of professionnals3,5. Projects with validation 
showed that the accuracy of volunteers could present 
high scores of reliability17,22,23 while volunteers' 
performance varied a lot depending on the species 
and the protocol. Because they distinguish ecological 
processed from their observation in the field, 
occupancy models formulated as HMMs allow 
testing specific hypotheses on CS. Our results 
showed that although professional observers did not 
help to obtain a higher detectability, they produced 
more certain data than amateur when they correctly 
detected the species (Fig. 4A). However, because 
amateurs were assigned to their hometown while 
professionals to their office, there was an important 
number of professional observers around the head 
office of the ONCFS in Grenoble (Fig. 2C). 
Moreover, when the network is deployed in a new 
administrative department, the first training session 
is mostly intended to professional officers first. This 
explains the important proportion of professional 
observers at the edge of the network. When looking 

 

Figure 4: Effect of covariates on model parameters. A. Effect of the proportion of professional observers on δ, 
the probability of correctly detecting the species when the site is occupied. B. Effect of the sampling effort PO on δ. 
C. Effect of the sampling effort on P10 the probability incorrectly detecting the species at an unoccupied site. D. 
Effect of the sampling effort on P11 the probability of detecting the species at an occupied site. The relationship 
between a parameter and a covariate is obtained by fixing all the other covariates to their mean value. Histograms 
represent the distribution of the tested covariate across its range (right Y-axis). 
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at the distribution of detections, it appears that most 
uncertain data are located at the edge or outside of 
the known territories of the species. Therefore, 
uncertain signs of presence are more likely collected 
on sites with high proportion of professionals. As 
professionals produce more certain data when they 
detect the species, training them first is probably an 
efficient strategy.  
 Regarding our second hypothesis, we showed 
that being aware of wolf presence in the 
administrative department increased detectability 
(Fig. 4C, 4D). In particular, the probability of false 
positive increased, suggesting that the willingness of 
observers to detect a wolf might be a driving factor 
of detectability and hence lead to misidentifications. 
This change in observer attitude could originate from 
media coverage of wolf presence, as they relay 
information about wolf and hence may encourage 
amateurs to go out and track the wolf.  

While increasing sampling effort increased δ, 
its effect on P10 and P11 need to be discussed. The 
positive effect on P10 was almost null in intensity 
(Fig. 4C), especially for the range of sampling effort 
that contained most of our dataset (95% of 
observations with less than 50 observers per site). 
The same argument is applicable for P11 (Fig. 4D), 
with the more observers there are on a site the less 
likely it is to detect the species. This counterintuitive 
effect might be explained by the effect of sites with 
high values of sampling effort. Very high sampling 
efforts are mostly located in urban areas (Fig. 2B) 
and hence on sites where wolf is unlikely to be 
present, which may drive negatively the relationship 
between P11 and the sampling effort. 
 
Shall we include uncertain data? 

Misidentification is a challenging issue when 
monitoring elusive species like large carnivores6. 
Although dynamic occupancy models have been 
shown to be of great reliability to infer range 
dynamics while accounting for false negatives, it is 
only recently that they have been extended to deal 
with false positives6–8,24. Usually, only certain signs 
of presence are used in standard occupancy models, 
therefore leading to wasting data, which might affect 
the motivation of the network observers2,5. 
Moreover, in the case of CS, an important question is 
the quality and the accuracy of the observation3,22. 
Usually such protocols lead to a classification of the 
observations into different class of certainty15,25,26. 
Thus, several outputs are possible: either to throw 
away uncertain data due to their important variability 
or either trying to use them, assess their accuracy and 

include them in statistical models. Besides, including 
uncertain data is sometimes the only way to bring 
information on locations where nothing else is 
available. For example, 15% of our dataset was 
composed of uncertain detections and such 
detections were often present at the edge of the wolf 
distribution (Fig. 2A) in areas where no certain data 
were recorded.  

On average, there were only slight differences 
between predictions from CU and CO models (Fig. 
3). However, we observed heterogeneities in the 
distribution of these differences, CU model 
predicting higher occupancy at the colonization front 
than the CO model. This is consistent with the higher 
presence of uncertain detections outside of the 
known range (Fig. 2A). Indeed, knowing that 
uncertain detections are often present at the 
colonization front (Fig. 2A), it is reasonable that CU 
model is more likely to detect wolves in such areas, 
especially as the probability of producing false-
positive is low (0.006). According to the high value 
of δ and to the low value of P10, one could treat 
uncertain data as if they were certain and use the CO 
model with this extended dataset. It remains to 
determine whether the differences between CU and 
this new model are significant to quantify the 
importance of accounting for false positives in our 
dataset. 

Despite these results, we suggest bias may 
exist in assignation of sign as uncertain or certain. 
Due to the large amount of detections in areas of 
permanent wolf presence, uncertain signs are not 
collected by the observers (Duchamp, personal 
communication). Although standardized procedures 
exist, we hypothesize that wolf experts who classify 
the observation as certain or uncertain are more 
likely to assign an observation as certain if the wolf 
is already known to be present in the area. However, 
when signs of presence are recorded in new area of 
presence, further investigation is conducted by 
ONCFS involving all the wolf experts to 
counterbalance possible bias of assignation. Besides, 
wolf experts regularly proceed to blind assignation of 
signs to correct for heterogeneities between them. 
 
Monitoring implications 

This work underlined strengths of the wolf 
network that have never been investigated so far. The 
over-representation of professional at the edge of the 
network could be positive as they produce more 
reliable observations especially useful as red-flag in 
case of new colonization (Fig. 2C). The density of 
the network is another strong characteristic. It is 
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particularly high on locations presumably hard to 
access with low population density. In such areas, 
involvement of volunteers is of great help to achieve 
a high detectability, which highlights the added value 
of considering the monitoring as a CS project. 
Clearly, observer effects due to differences in age27, 
experience (this study), or time spent in the 
network28 should be accounted for. To do so, a better 
follow-up of the observers is needed to, e.g., better 
quantify the sampling effort by recording the exit 
date of observers or address change. These are only 
suggestions and we acknowledge that an external 
evaluation conducted in 2012 by the IUCN about the 
monitoring of wolves in France reported its 
exceptionally high efficiency10. 
 Being able to incorporate uncertain data could 
also have implications for conservation. CU model 
tended to predict wolves outside of its known range 
while CO model did not. The CU model predictions 
of wolf occupancy in such sites are based on 
available suitable habitat, distance to the closest 
patch and the uncertain signs collected while the CO 
model uses only habitat and distance to closest patch. 
Adding the uncertain data can therefore be a 
worthwhile indicator of a future colonization. 
Accumulation of uncertain signs precedes every 
colonization. As a perspective, one could analyze the 
correlation between CU model predictions (or 
differences between CU and CO) and the true signs 
of presence that would be collected a few years later 
on a colonized area. If there is a correlation between 
positive model differences and proximate wolf 
colonization, it would suggest that CU model can be 
used as predictor of future wolf colonization, which 
could be a significant tool to decision-makers. 
 
Conclusion 
 Over the last decades, the number of CS 
projects has considerably increased1,22. CS allows 
collecting data on otherwise unachievable space 
scales, time periods, and intensity of prospection. To 
make sense of these data, we need statistical tools to 
assess and evaluate the uncertain data produced by 
volunteers. We demonstrated that dynamic 
occupancy models accouting for false positives are 
good candidates to do so. 
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