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Introduction

Nathalie PEYRARD1, Stéphane ROBIN2 and Olivier GIMENEZ3
1University of Toulouse, INRAE, UR MIAT, Castanet-Tolosan, France

2Paris-Saclay University, AgroParisTech, INRAE, UMR MIA-Paris, France
3CEFE, University of Montpellier, CNRS, EPHE, IRD,

Paul Valéry Montpellier 3 University, France

I.1. Hidden variables in ecology

Ecology is the study of living organisms in interaction with their environment.
These interactions occur at individual level (an animal, a plant), at the level of groups
of individuals (a population, a species) or across several species (a community).
Statistics provides us with tools to study these interactions, enabling us to collect,
organize, present, analyze and draw conclusions from data collected on ecological
systems. However, some components of these ecological systems may escape
observation: these are known as hidden variables. This book is devoted to models
incorporating hidden variables in ecology and to the statistical inference for these
models.

The hidden variables studied throughout this book can be grouped into three
classes corresponding to three types of questions that can be posed concerning an
ecological system. We may consider the identification of groups of individuals or
species, such as groups of individuals with the same behavior or similar genetic
profiles, or groups of species that interact with the same species or with their
environment in a similar way. Alternatively, we may wish to study variables which
can only be observed in a “noisy” form, often called a “proxy”. For example, the
presence of certain species may be missed as a result of detection difficulties or
errors (confusion with another species), or as a result of “noisy” data resulting from
technology-related measurement errors. Finally, in the context of data analysis, we
may wish to reduce the dimension of the information contained in data sets to a small
number of explanatory variables. Note the shift from the notion of a variable which
escapes observation, in the first cases, to a more generalized notion of hidden
variables.

Statistical Models for Hidden Variables in Ecology,
coordinated by Nathalie PEYRARD and Olivier GIMENEZ. © ISTE Ltd 2022.
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xii Statistical Models for Hidden Variables in Ecology

All three of these problems can be translated into questions of inference
concerning variables which, in statistical terms, are said to be latent. Inference poses
statistical problems that require specific methods, described in detail here. The
ecological interpretation of these variables will also be discussed at length. As we
shall see, while the statistical treatment of these variables may be complex, their
inclusion in models is essential in providing us with a better understanding of
ecological systems.

I.2. Hidden variables in statistical modeling

The term “hidden variable”, widely used in ecology, finds its translation in the
more general notion of latent variables in statistical modeling. This notion
encompasses several situations and goes beyond the idea of unobservable physical
variables alone. In statistics, a latent variable is generally defined as a variable of
interest, which is not observable and does not necessarily have a physical meaning,
the value of which must be deduced from observations. More precisely, latent
variables are characterized by the following two specificities: (i) in terms of number,
they are comparable to the number of data items, unlike parameters that are fewer in
number. Consider, for example, the case of a hidden Markov chain, where the
number of observed variables and latent variables is equal to the number of
observation time steps; (ii) if their value were known, then model parameter
estimation would be easier. For example, consider the estimation of parameters of a
mixture model where the groups of individuals are known.

In practice, if a latent variable has a physical reality but cannot be observed in the
field (e.g. the precise trajectory of an animal, or the abundance of a seedbank), it is
often referred to as a hidden variable (although both terms are often used
interchangeably). In other cases, the latent variable naturally plays a role in the
description of a given process or system, but has no physical existence. This is the
case, for example, of latent variables corresponding to a classification of observations
into different groups. We will refer to them as fictitious variables. Finally, latent
variables may also play an instrumental role in describing a source of variability in
observations that cannot be explained by known covariates, or in establishing a
concise description of a dependency structure. They may result from a dimension
reduction operation applied to a group of explanatory variables in the context of
regression, as we see in the case of the principal components of a principal
component analysis.

The notion of latent variables is connected to that of hierarchical models: if they
are not parameters, the elements in the higher levels of the model are latent variables.
It is important to note that the notion of latent variables may be extended to cover the
case of determinist quantities (represented by a constant in a model). For example, this
holds true in cases where the latent variable is the trajectory of an ordinary differential
equation (ODE) for which only noisy observations are available.
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I.3. Statistical methods

Some of the most common examples of statistical models featuring latent variables
are described here.

Mixture models are used to define a small number of groups into which a set of
observations may be sorted. In this case, the latent variables are discrete variables
indicating which group each observation belongs to. Stochastic block models
(SBMs) or latent block models (LBMs, or bipartite SBM) are specific forms of
mixture models used in cases where the observations take the form of a network.
Hidden Markov models (HMMs) are often used to analyze data collected over a
period of time (such as the trajectory of an animal, observed over a series of dates)
and take account of a subjacent process (such as the activity of the tracked animal:
sleep, movement, hunting, etc.), which affects observations (the animal’s position or
trajectory). In this case, the latent variables are discrete and represent the activity of
the animal at every instant. In other models, the hidden process itself may be
continuous. Mixed (generalized) linear models are one of the key tools used in
ecology to describe the effects of a set of conditions (environmental or otherwise) on
a population or community. These models include random effects which are, in
essence, latent variables, used to account for higher than expected dispersions or
dependency relationships between variables. In most cases, these latent variables are
continuous and essentially instrumental in nature. Joint species distribution models
(JSDMs) are a multidimensional version of generalized linear models, used to
describe the composition of a community as a function of both environmental
variables and of the interactions between constituent species. Many JSDMs use a
multidimensionsal (e.g. Gaussian) latent variable, the dependency structure of which
is used to describe inter-species interactions.

In ecology, models are often used to describe the effect of experimental
conditions or environmental variables on the response or behavior of one or more
species. Explanatory variables of this kind are often known as covariates. These
effects are typically accounted for using a regression term, as in the case of
generalized linear models. A regression term of this type may also be used in latent
variable models, in which case the distribution of the response variable in question is
considered to depend on both the observed covariates and non-observable latent
variables.

Many methods have been proposed for estimating the parameters of a model
featuring latent variables. From a frequentist perspective, the oldest and most
widespread means of computing the maximum likelihood estimator is the
expectation–maximization (EM) algorithm, which draws on the fact that the
parameters for many of these models would be easy to estimate if the latent variables
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could be observed. The EM algorithm alternates between two steps: in step E, all of
the quantities involving latent variables are calculated in order to update the
estimation of parameters in the second step, M. Step E focuses on determining the
conditional distribution of latent variables given the observed data. This calculation
may be immediate (as in the case of mixture models and certain mixed models) or
possible but costly (as in the case of HMMs); alternatively, it may be impossible for
combinatorial or formal reasons.

The estimation problem is even more striking in the context of Bayesian
inference, as a conditional distribution must be established not only for the latent
variables, but also for parameters. Once again, except in very specific circumstances,
precise determination of this joint conditional law (latent variables and parameters) is
usually impossible.

The inference methods used in models with a non-calculable conditional law fall
into two broad categories: sampling methods and approximation methods. Sampling
methods use a sample of data relating to the non-calculable law to obtain precise
estimations of all relevant quantities. This category includes the Monte Carlo, the
Markov chain Monte Carlo (MCMC) and the sequential Monte Carlo (SMC)
methods. These algorithms are inherently random, and are notably used in Bayesian
inference. Methods in the second category are used to determine an approximation of
the conditional law of the latent variables (and, in the Bayesian case, of parameters)
based on observations. This category includes variational methods and their
extensions. These approaches vary in terms of the measure of proximity between the
approximated law and the actual conditional law, and in terms of the distribution
family used when searching for the approximation.

I.4. Approach and structure of our work

This book provides an overview of recent work on statistical modeling and
estimation in latent variable models for ecology. The different chapters illustrate the
main principles described above. In some cases, they present statistical methods
based on classical models and algorithms; in others, the focus is on developments
from recent research in others. Each chapter addresses a specific ecological issue and
a modeling approach to solving the problem, illustrated using one or more case
studies.

Readers may also access the R code1 in order to make use of the tools presented
here, applied to their own data.

1 https://oliviergimenez.github.io/code_livre_variables_cachees/.

Copyright Iste 2022 / File for personal use of Valentin Lauret only



Introduction xv

Most of the questions associated with the case studies presented here relate to the
comprehension or description of systems. While the issue of forecasting and
prediction is touched upon in some chapters, this subject lies outside the main scope
of our work. The issue of missing data (i.e. values not observed in samples) is also
not addressed either. Finally, note that this work is not an exhaustive summary of
latent variable models, or of the inference methods and algorithms used with these
models. Each chapter touches on the question of inference in relation to the selected
model; readers wishing to explore the subject in greater depth may wish to consult
the references provided.

This book is not designed to be read from front to back, but rather as a resource on
which ecologists working with models or statisticians working in the field of ecology
may draw. Chapters are arranged in order of ecological scale, from individuals up to
ecosystems, providing an initial interpretive framework. Another approach would be
to consider the nature of the hidden variable being modeled. One final approach would
be to examine different statistical models: some models are used in several chapters, in
connection with questions on different scales, and using different estimation methods.

Table I.1 gives a summary of the contents of the different chapters and is designed
to help readers identify material which is of interest to them.

I.5. Directions for further perspectives

The examples described above, along with those presented in the following
chapters, highlight the immense flexibility of latent variables models. These models,
involving one or more latent layers, provide a rich framework for the description of
complex dependency structures, and/or for the approximation of a mechanistic
description of the phenomena involved.

However, it is important to note that the most sophisticated models are almost
always the most complex in terms of inference. It would be wrong to assume that
inference simply “happens”, whatever the statistical approach (frequentist, Bayesian,
etc.). At the time of writing, there is no fully generic approach suitable for use with
all models, and this is unlikely to change in the near future. Even the best-established
algorithms (EM, MCMC, etc.) require users to have a good understanding of the
underlying principles in order to guide and control their behavior, and/or to adjust the
algorithm as needed. This need for adjustment is clearly visible in the chapters of this
book.

To conclude this introduction, we wish to highlight two areas for further research
in ecology, drawing on statistical modeling of hidden variables, which are not covered
in this book but which show promise: namely the integration (or combination) of data
from multiple sources, and the use of participative scientific data.
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Latent variable
Chapter Scale Model Nature Domain

1 Individual Hidden Hidden: position R
Markov chain Fictitious: behavior {1, . . . ,K}

2 Individual Hidden Fictitious: proximal {1, . . . ,K}
Markov chain signals

Hidden: resource acquisition {1, . . . ,K}
and allocation

3 Population Hidden Hidden: population {1, . . . ,K}
Markov chain dynamics

4 Population Noisy ODE Hidden: population N+

size
5 Metapopulation Spatialized hidden Hidden: class {1, . . . ,K}

Markov chain of dormant state
6 Community Mixture (SBM and Fictitious: groups {1, . . . ,K}

bipartite SBM) of species with the same
interaction structure

7 Community Regression Fictitious: correlations R
(JSDM for presence–absence) between species

8 Community Regression Fictitious: correlations R
(JSDM on counts) between species

9 Community Regression Instrumental: R
(JSDM on counts) components summarizing

covariates
10 Socio-ecosystem Regression Hidden: components R

(SEM) of the system which are
not directly measurable
and are in interaction

Table I.1. Chapters and contents

Several works have recently been published on the integration of data from
multiple sources in the field of ecology (Miller et al. 2019; Isaac et al. 2020). The
aim of the authors is to systematically improve the precision of estimated data,
potentially decreasing sample size, and to enable the estimation of parameters that
cannot be approximated by any other means. Data integration generally involves a
hierarchical modeling approach in which the hidden variable is present in all of the
sources used in its estimation.

Data from participative scientific activity has also received increasing attention
in the literature in recent years (Dickinson et al. 2012; McKinley et al. 2017). This
is due to the increasing availability of the data, and to the fact that information can
now be collected across an increasingly broad spatial and temporal scale. Participative
data sources are a fascinating subject of study in statistical ecology, raising a number
of new challenges in terms of spatial bias in sampling, or variations in participant
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expertise. Once again, a clear distinction between the ecological processes embodied
by the hidden variables and the associated observation methods is essential in order to
develop a full response to the ecological question.
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1.1. Introduction

The study of movement in ecology has taken off in recent years, driven by
questions relating to the determinisms of individual movement. Interest in the
ecology of movement has been largely fueled by the emergence and development of
GPS technologies over the last 20 years, helped along by the creation of numerous
databases made up of individual trajectories. These observations, on fine spatial and
temporal levels, can be used to study the behavior of individuals in relation to their
living environment. A variety of trajectory models have been developed and applied
with the aim of reconstructing these behaviors and understanding the underlying
determinisms. In this chapter, we shall present two latent variable models, widely
used in movement ecology for trajectory analysis. Each model corresponds to a
specific objective: the reconstruction of real trajectories with the removal of any
geolocation errors, and the identification of different behaviors in the course of
movement.

1.1.1. Reconstructing a real trajectory from imperfect observations

Trajectory data are frequently marred by errors for a variety of reasons (satellite
accessibility issues, geolocation errors, etc.). This results in noisy observations of the

Statistical Models for Hidden Variables in Ecology,
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real position of the animal, which is itself unknown. The hidden variable is,
therefore, the real position and the observed variable is the noisy version. In Figure
1.1, we can see that some recorded positions of a Cape dolphin, tracked using the
Argos system, are actually on land – a situation which is evidently improbable. This
observation almost certainly corresponds to noisy data concerning the actual position
of the tracked individual.

Figure 1.1. The map at the top shows the tracking data for a male Cape dolphin
(Cephalorhynchus heavisidii) in St. Helena Bay, South Africa. The coastline is shown in
black, and we see that some recorded positions are actually on land. These positions
are obtained using an Argos system. Figure taken from Elwen et al. (2006). Photo of
a Cape dolphin by Jutta Luft, distributed under the GNU Free Documentation License.
For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip
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Trajectory Reconstruction and Behavior Identification Using Geolocation Data 3

Observation errors are generally small (a few meters) in cases where positions
are obtained using a GPS system on open ground and with good satellite coverage.
Far larger errors may occur using other technologies, such as the Argos system (into
the tens of kilometers). A hierarchical model for reconstructing real trajectories from
observed trajectories is presented in section 1.2.1.

1.1.2. Identifying different behaviors in movement

Individuals rarely move in a homogeneous manner, and different movement
patterns are often observed. In Nathan et al. (2008), the authors propose a
formalization of the mechanisms responsible for individual movement. Among the
different aspects mentioned, the internal state of the individual and the environment
in which it exists are identified as important mechanisms of movement. It seems
reasonable to believe that the internal state of an individual affects its behavior,
resulting in a change of movement regime.

Any study of individual movement must permit the identification of different states
or activities. In this case, the hidden variable is the activity of the individual, while the
observed variable is its position, or various metrics derived from this position, as we
shall see later. Section 1.2.2 presents a reconstruction of behavior based on movement
observations, using a specific latent variable model known as a hidden Markov model.

1.2. Hierarchical models of movement

1.2.1. Trajectory reconstruction model

1.2.1.1. Overview

In cases where there are errors in observed positions, data can be smoothed in order
to recreate the real trajectory. To smooth errors, all collected data points are combined
with a movement model in order to “straighten out” outlying observations and thus
correct positioning errors.

Different ways of taking account of observation errors in movement models have
been discussed at length in the literature (Freitas et al. 2008; Johnson et al. 2008;
Patterson et al. 2010). For initial, simple trajectory reconstructions, however, a linear
Gaussian hierarchical model can be used as a first data exploration. This approach
draws on the notion that the observed position is a noisy version of the real position,
and that the noise around this position is Gaussian. In formal terms, take n noisy
observations, y0:n = (y0, . . . , yn), of an animal’s position. Generally speaking (and
throughout this chapter), we presume that each observed position is a vector of R2.
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These observations are presumed to be realizations of random variables Y0:n, the
distribution of which depends on the real position of the animal. Moreover, the real
position of an animal at a given instant (unknown) is dependent on its real position
for the previous instant (also unknown). In formal terms, these positions themselves
can be seen as a sequence of non-independent random variables, noted
Z0:n = (Z0, . . . Zn), with values in R2.

We consider that all of these random variables obey the following hierarchical
model:






Z0 ∼ N (µ0,Σ0)

Zt = AZt−1 + µ+ Em
t , Em

t
i.i.d∼ N(0,Σm), 1 ≤ t ≤ n

Yt = BZt + ν + Eo
t , Eo

t
i.i.d∼ N(0,Σo) 0 ≤ t ≤ n

[1.1]

From top to bottom, these three equations define:

– The initial distribution: the a priori initial position of the individual. In this
case, we have a normal distribution (in dimension 2) about an initial position µ0, with
a variance–covariance matrix Σ0.

– The transition distribution (or dynamic model): in this case, a model of the
individual’s movement. We consider that the current position is given by a random
Gaussian variable, centered about an affine transformation of the previous position,
with a variance–covariance matrix Σm. The affine transformation is obtained from
two parameters: a matrix A (of size 2 × 2) and a vector µ of dimension 2. The most
common approach is to consider that µ = 0 and to take A as the identity matrix. The
resulting model is a random walk.

– The emission distribution (or observation model): the observation is taken to
be a random Gaussian variable centered about an affine transformation of the current
position, with variance–covariance matrix Σo. The affine transformation is given by
two parameters: a matrix B (of size 2 × 2) and a vector ν of dimension 2. The most
common approach is to consider that ν = 0 and to take B as the identity matrix. The
observation is thus presumed to be centered about the real position.

1.2.1.2. Inference

Using the model defined by [1.1], inference is used for two purposes:

– Estimation of positions: in this case, inference is used to determine the
distribution of actual positions based on observations, that is, for 0 ≤ t ≤ n,
the distribution of the random variable Zt|Y0:n. This distribution is known as the
smoothing distribution.
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– Estimation of parameters: to estimate the unknown parameters in the model
(which, in the majority of cases, correspond to the two variance–covariance matrices,
Σm and Σo).

With known parameters and for any 0 ≤ t ≤ n, the distribution of Zt|Y0:n is
Gaussian. The mean and the variance–covariance matrix of this distribution can be
calculated explicitly. This step is carried out using Kalman smoothing, which will not
be described in detail here; interested readers may wish to consult Tusell (2011). It is
important to note that the explicit nature of this solution is exceptional in the context
of latent variable models, and is a result of the Gaussian linear formulation of model
[1.1].

In practice, the parameter θ = {µ,A, ν, B,Σm,Σo} is unknown. In a frequentist
context, the natural aim is to identify the parameter that maximizes the likelihood
associated with observations Y0:n:

L(Y0:n|θ) =
∫

. . .

∫
p(Y0:n, x0:n)dx0 . . . dxn,

where p is a generic notation for probability density. In this case, the expression of
likelihood implies the calculation of an integral in very high dimensions, as it must be
integrated across all hidden states. However, given a known sequence of real positions
X0:n, we would have an explicit expression of the full log-likelihood:

# (Y0:n, X0:n|θ) = log p(X0|θ) + log p(Y0|X0, θ)

+
n∑

t=1

(log p (Xt|Xt−1, θ) + log p (Yt|Xt, θ)) . [1.2]

As all of the densities in this model are Gaussian, maximization of the
log-likelihood would be simple. The expectation–maximization (EM) algorithm uses
this full likelihood to maximize likelihood. Based on an initial parameter value θ(0),
the algorithm produces a series of estimations

{
θ(!)
}
!≥0

as follows:

– Step E calculates:

Q(θ|θ(!)) = E# (Y0:n, X0:n|θ) |Y0:n = y0:n, θ
(!). [1.3]

– Step M takes:

θ(!+1) = argmaxθQ(θ|θ(!)).
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The series
{
θ(!)
}
!≥0

converges to a local maximum likelihood (Dempster et al.
1977). Equation [1.3] consists of calculating the expectation of [1.2] with respect to
the distribution of missing data given the existing observations, that is, the distribution
of X0:n| {Y0:n = y0:n), using a “real” parameter θ(!). The smoothing distribution for
the parameter θ(!) must, therefore, be calculated as part of this step; this is done using
Kalman smoothing. A solution is then obtained explicitly in step M thanks to the
Gaussian linear nature of the problem.

1.2.1.3. Filtering and smoothing a trajectory

As we have seen, the reconstruction of a trajectory is reliant on the determination
of a smoothing distribution, that is, for all 0 ≤ t ≤ n, the distribution of Zt|Y0:n. Note
that the inference of the real position at a time t takes account of all observations.
As this distribution is Gaussian in the context of the model [1.1], this corresponds to
calculating E[Zt|Y0:n] and V[Zt|Y0:n] using Kalman recursions.

The name Kalman is more often encountered in the context of Kalman filtering,
rather than Kalman smoothing. In these contexts, the Kalman filter is used to
determine the filter distribution, that is, the distribution of Zt|Y0:t. It is, thus, the
distribution of the position at time t on the basis of the observations up to time t.

Intuitively, smoothing gives a better estimation than filtering, as the future can be
taken into account when estimating a position at time t. Using filtering, the tth position
is corrected using positions observed up until time t, while in the case of smoothing,
all of the available information is taken into account. Figure 1.2, taken from Lopez
et al. (2015), illustrates the advantages of smoothing. A precise, frequent recording
of the movement of an elephant seal, obtained using GPS (the reference curve), is
shown alongside a reconstruction of the same real trajectory obtained using Argos
data, filtering and smoothing.

1.2.2. Activity reconstruction model

1.2.2.1. Overview

As we indicated earlier, an individual alternates between different activities, and
these are reflected in different modes of movement. For example, an individual who
is looking for food will move slowly, with frequent changes of direction as potential
food sources are detected. An individual traveling back to the colony, on the other
hand, will travel relatively quickly and in a relatively straight line.

Subjacent (hidden) activities may be reconstructed by analyzing a trajectory,
using a model that connects activities and movement. In this case, the observations
y0:n = (y0, . . . , yn) are measures of a metric, which is presumed to be affected by an
animal’s activity (typically, this metric represents speed; other examples are
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discussed in the following section). Taking 0 ≤ t ≤ n, zt is used to represent the
unobserved activity of an individual at an instant t. This activity is encoded as an
integer between 1 and J , where J is a known integer, representing the number of
expected activities. Observations and hidden activities are considered as realizations
of random variables. Let Z := (Z0, . . . , Zn) be the series of hidden states (subjacent
activities) and Y := (Y0, . . . , Yn) the series of movement measurements.

Figure 1.2. Figure extracted from Figure 4 in Lopez et al. (2015). The black line shows
a precise recording of the movements of an elephant seal. The green line was obtained
by filtering positions recorded using the Argos system, and the purple line shows a
smoothed version of the same data. The trajectory reconstructed using smoothing
corresponds more closely to the reference data than the version obtained by filtering.
For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

Using a classic activity reconstruction approach, the sequence Z is modeled by a
Markov chain, that is, the series of random variables Zt verifies the Markov property;
in other terms, for any series of integers z0:t with values in {1, . . . , J}i+1:

P
(
Zt = zt|Z0:(t−1) = z0:(t−1)

)
= P (Zt = zt|Zt−1 = zt−1).

Furthermore, if we consider that this probability of transition is independent of the
instant t, the Markov chain is said to be homogeneous1.

1 This hypothesis is helpful from a mathematical perspective, and results in efficient hidden
state reconstruction algorithms. From a modeling perspective, its use is debatable, since it
implies that the individual has no memory of its past trajectory.
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The model draws on the idea that the distribution of Yt is dependent on the
activity. The modeler must, therefore, specify the distribution of Yt| {Zt = j}. This
specification is generally carried out using a parametric distribution (typically a
normal distribution). Activity identification is based on the ways in which the
parameters of this distribution change (the mean and variance change as the activity
changes).

The full model is formulated as follows:

P (Z0 = j) = ν0(j), 1 ≤ j ≤ J
P (Zt = j| {Zt−1 = i}) = Π (i, j) , 1 ≤ i, j ≤ J

Yt| {Zt = j} i.i.d∼ Dist. (θj) 1 ≤ j ≤ j

[1.4]

From top to bottom, these three equations define:

– The initial distribution: this the probability distribution for the first activity, and
is thus a vector of probabilities ν0 = (ν0(1), . . . , ν0(J)). In the common case where
only one trajectory is observed, the initial distribution is taken to be known, or equal
to a uniform distribution over {1, . . . , J}.

– The transition distribution: in the case of a homogeneous Markov chain, the
transition distribution is fully characterized by the matrix Π, of size J × J , of which
each line is a probability vector.

– The emission distribution: the observation is taken to be a random variable, the
distribution of which depends, via these parameters, on the activity. The nature of
the distribution depends on the nature of the observations. Note that observations are
considered to be independent, conditionally to Z.

This model is shown in the graphical form in Figure 1.3.

1.2.2.2. Choice of observation metric

This general framework offers many possibilities in terms of modeling. The
subjacent activity may influence different aspects of the trajectory. For example, the
trajectory of an individual looking for food will include multiple changes in
direction. On the other hand, when an individual is traveling, in the context of
migration, for example, its trajectory tends to be relatively straight with only minor
changes in direction. In this example, changes in direction are strong activity
markers.

Most of the metrics encountered in existing literature are based on the speed and
direction of the animal in question.
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Figure 1.3. Graphical model. For a color version of this
figure, see www.iste.co.uk/peyrard/ecology.zip

Starting from the positions {Pt}t≥0 (with values in R2 obtained at times
0,∆, 2∆, . . . ), the process of speeds {Vt}t≥1 is defined by

Vt =
Pt − Pt−1

∆
.

From these speeds, we can define the direction {ψt}t≥0 (with values in [−π,π[)
as the angle between Vt and a reference vector (typically the vector (1, 0) pointing
east). From these metrics, we deduce step length (or scalar speed) processes, denoted
as{Lt}t≥1, and turning angles, denoted as{ϕt}t≥1 (with values in ]− π,π] using the
convention ϕ1 = 0) as follows:

Lt = ||Vt|| [1.5]

ϕt =






ψt − ψt−1 if |ψt − ψt−1| ≤ π
−2π + (ψt − ψt−1) if ψt − ψt−1 ≥ π
2π + (ψt − ψt−1) if ψt − ψt−1 ≤ −π

[1.6]

The step length and turning angle metrics were the first to be used in behavior, or
activity, analysis based on HMMs (Morales et al. 2004) and have been widely used
(Patterson et al. 2008). In this way, we obtain the model illustrated in Figure 1.3,
where Yt is a bivariate vector of coordinates (Lt,ϕt) (often considered to be
independent). One drawback to this method is the need to define an emission
distribution, which is compatible with angles in order to model (ϕt). In practice,
Von Mises (Jammalamadaka and Sengupta 2001) or Wrapped Cauchy distributions
are the most widely used.

A different set of equivalent metrics may be used in order to avoid working with
circular distributions, as proposed in Gurarie et al. (2009) and Gloaguen et al. (2015);
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these are persistence velocity (V p
t ) and turning velocity (V r

t ):

V p
t = Lt cos(ϕt) [1.7]

V r
t = Lt sin(ϕt) [1.8]

An observation Yt is thus a vector made up of these two components. As these
components are signed, it is logical to model Yt using a bivariate normal
distributions. Where relevant, this model allows the introduction of a dependency
relationship between the two movement components, something which is difficult to
achieve when selecting a couple (Lt,ϕt).

Ecological expertise concerning the effects of different activities on movement can
also contribute to the choice of an appropriate metric. In the case study presented at
the end of this chapter, the two classic metrics were used to illustrate the difference
between the two approaches, in terms of both results and practical implementation.
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Figure 1.4. Illustration of the quantities present in equations [1.5]–[1.8]. Pt denotes the
successive positions occupied by the tracked individual. The series of speed vectors
denoted as(Vt) and (Lt) denotes step length as defined by equation [1.5]. The series
of directions is denoted as(Ψt), while (φt) is the series of turning angles as defined by
equation [1.6]. For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

1.2.2.3. Covariates inclusion
A further question concerns the extent to which activity is influenced by covariates

(distance from a point of interest, time of day, etc.). One way of including covariates
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is to model their impact on the transition between activities (Calenge et al. 2009;
Morales et al. 2004; Michelot et al. 2016).

For example, in the model presented here, P (Zt = j|Zt−1 = i) is independent of
t and takes a value of Π (i, j). Let us suppose that at each moment t, p covariates are
measured and stored in a line vector xt. Transition probability can be linked to these
variables according to a multiclass logistic regression approach:

ln
P (Zt = j|Zt−1 = i)

P (Zt = i|Zt−1 = i)
= xtβ(i, j), for all j &= i, [1.9]

P (Zt = i|Zt−1 = i) = 1−
J∑

j=1,j #=i

P (Zt = j|Zt−1 = i).

The first equation indicates that the probability of switching to a different activity
j from a current activity i is connected to external conditions via a linear
combination of covariates at time t. β(i, j) is the column vector (of dimension p) of
the coefficients corresponding to the influence of each covariate on this probability.
The second equation is a constraint equation that ensures that the vector
(P (Zt = 1|Zt−1 = i)), . . . ,P (Zt = J |Zt−1 = i)) is a probability vector.

It is thus possible to take account of notions such as the fact that an individual
will spend a longer period of time actively foraging in a location that is rich in food
sources, while in a less favorable environment, it will rapidly switch to a traveling
state in order to move to a better location. The inclusion of covariates in this model
makes it possible to identify environmental variables, which favor particular states.

1.2.2.4. Example: a three-state HMM with Gaussian emission

Let us illustrate model [1.4] using a toy example. Consider an individual with a
total of three possible behaviors. Thus, let J = 3 be the number of activities for this
individual. Each of these activities is characterized by a different movement pattern:
for example, a direct trajectory at high velocity, a more sinuous pattern at a lower
speed, and a third, different pattern. As we have seen, these differences may be
characterized using different metrics. In this example, we have chosen to model
persistent velocity and turning velocity, using equations [1.7] and [1.8].

Thus, in model [1.4], ν0 is a probability vector of size 3, Π is a 3 × 3 matrix such
that the sum of the elements in each line is equal to 1, and, for 1 ≤ j ≤ 3, distribution
(θj) is a distribution N (µj ,Σj), where:

– µj is a vector of dimension 2 (the mean of V p and V r for activity j);

– Σj is a variance–covariance matrix (of size 2× 2).
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1.2.2.5. Inference

Using the model defined by [1.4], inference is used to fulfill two purposes:

– Estimation of activity: to determine the distribution of real activities given the
observations, that is, for 0 ≤ t ≤ n, the distribution of the random variable Zt|Y0:n.
For each time t, the estimated smoothing distribution gives the probability of being
involved in each of the j activities.

– Estimation of parameters: the distribution ν0 and the transition matrix Π
characterize the dynamic of activities, and the set of parameters {θj} 1 ≤ j ≤ J
indicates the way in which the activity influences the distribution of observations.

In the case of unknown parameters, these two steps are carried out conjointly.
Taking a frequentist approach, the EM algorithm may be used, as in section 1.2.1.
Once again, it is easy to write an equation, analogous to [1.2], giving the full
likelihood.

For this model, step E once again consists of calculating the quantity given by
[1.4]. Again, the difficulty lies in calculating the smoothing distribution. Nevertheless,
the discrete character of the hidden dynamic means that explicit calculation is possible.
This is carried out iteratively using the forward–backward algorithm. The equations
used in this simple and efficient algorithm can be found in Rabiner (1989).

Step M, in which the parameters are updated, is dependent on the nature of the
emission distribution. In the Gaussian case, this step has an explicit expression;
conversely, this is not the case when using a distribution such as von Mises.

Bayesian estimation may be applied by using Monte Carlo Markov Chain
(MCMC) algorithms, which are found in programs such as Stan (Carpenter et al.
2017), Winbugs (Lunn et al. 2000) or NIMBLE (de Valpine et al. 2017).

1.2.2.6. Reconstruction of hidden states

The reconstruction of hidden activities allows us to identify homogeneous phases
in behaviors, and is often of considerable interest from an ecological perspective.
This hidden Markov model may thus be seen as an unsupervised segmentation/
classification model for movement.

One possibility is to reconstruct the most likely hidden activity for each time
increment in turn, taking Ẑ0:n = (Ẑ0, . . . , Ẑn) such that

Ẑt = argmaxjP (Zt = j|Y0:n). [1.10]

This method is known as the maximum a posteriori (MAP) method. One possible
problem with the estimator [1.10] is that it provides no guarantee that the sequence
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Ẑ0:n will be coherent with the transition matrix Π; it may give a result of Ẑt = 1 and
Ẑt+1 = 2 for an estimation Π̂(1, 2) = 0, for example.

Using a Bayesian approach, the sampling algorithms used to estimate parameters
permit the use of a joint smoothing distribution, that is, samples of Z0:n|Y0:n can be
obtained. Each sample produced is thus a possible sequence of activities
corresponding to given observations.

Sampling across this distribution can also be carried out in conjunction with a
frequentist approach, but the combinatorial level is high and the computational effort
involved rapidly becomes prohibitive as n increases. Hidden activities are most
commonly reconstructed using the most probable sequence of hidden states, that is,
which maximizes the overall a posteriori distribution, or, more formally,

Ẑ0:n = argmax
i0,i1,...,in

P (Z0 = i0, Z1 = i1, . . . Zn = in|Y0:n)

This sequence can be calculated in an efficient manner using the Viterbi
algorithm, and is the version which is generally returned by libraries offering
frequentist estimation. Note that the m most probable sequences can be obtained
using the generalized Viterbi algorithm (Guédon 2007).

1.2.2.7. Choosing the number of activities

There are two very different approaches to choosing a number of behaviors or
activities. The first is based on biological criteria, and a certain number of different
behaviors may be identified. In the example of the red-footed booby, described later,
a distinction is made between periods of rest, slow flight (corresponding to foraging)
and rapid, direct flight, corresponding to trajectories between two points of interest.

Nevertheless, in the case of a new species or study environment, it can be hard
to establish an initial idea of the number of hidden states; in this case, an approach
based on statistical, rather than biological, criteria may be preferred. In statistics, this
is known as a model choice problem, with “model” corresponding to a number of
components.

One well-known model choice criterion is the Akaike information criteria (AIC)
(Akaike 1973), which can be used to ensure that the number of parameters fits the data
as well as possible. The aim is not simply to identify a parsimonious model, which fits
the data; states need to be as different as possible, meaning that the problem is also
one of classification. A new state should only be added if it is sufficiently distinct
from other states. In this case, the integrated complete likelihood (ICL) criterion may
be used (Biernacki et al. 2000; Bacci et al. 2014).
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Given a set of estimated parameters for the model and a sequence of most
probable states Ẑ, reconstructed using the Viterbi algorithm, for example, this
criterion is defined thus:

ICL = −2 logPΘ̂

(
Y0:n, Ẑ0:n

)
+ d× logn,

where Θ̂ =

(
ν̂0, Π̂,

{
θ̂j
}

1≤j≤J

)
and d is the total number of free parameters in the

model in question. Using this definition, the model which minimizes the ICL will be
selected.

1.3. Case study: masked booby, Sula dactylatra (originals)

The data used in this section were collected by Sophie Bertrand (IRD), Guilherme
Tavares (UFRGS), Christophe Barbraud and Karine Delord (CNRS). The authors wish
to thank the IRD Tabasco JEAI (Jeune Equipe Associée Internationale) for permission
to use these data.

Figure 1.5. Masked Booby (Sula dactylatra) Photo: Sophie Bertrand. For
a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

1.3.1. Data

This case study concerns the behavior of the masked booby (Sula dactylatra).

The data used here consist of three trajectories of three masked boobies around
the Ilha do Meion, an island in the Fernando de Noronha archipelago (Brazil) in the
Atlantic Ocean (Figure 1.6). Positions were recorded by GPS, with data collected
every 10 s.
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Figure 1.6. Area of study (shown in red on the map) and three trajectories obtained
by tracking three different red-footed boobies. Data were acquired in time increments

of 10 s. For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

1.3.2. Projection

The recorded data for the boobies were provided in the form of latitude and
longitude measurements, that is, in terms of angles with respect to an origin point on
the Earth’s surface. The methods presented earlier use a notion of distance (such as
step length). While it is possible to calculate distances traveled over the Earth’s
surface using latitude and longitude coordinates, this requires the use of specific
formulas for movement on a sphere. Instead, data are often projected onto a plane,
enabling the use of Euclidean distance. Due to the spherical nature of the globe, the
actual projection used depends on the zone of interest2. In this case, projection is
carried out using UTM coordinates for zone 25 – south. In R, the sf library may be
used to facilitate geographical data processing (and, notably, projection).

1.3.3. Data smoothing

In this case, the frequency of data acquisition was high (one point every 10 s).
While there were few errors in the data (obtained using GPS), the temporal proximity
of observations may result in a somewhat erratic-looking trajectory. This erratic effect
is even more pronounced in the movement metrics used to detect different activities.

2 One degree of longitude at the equator does not correspond to the same distance as 1 degree
of longitude at the 45th parallel, for example.
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To correct errors, let us take a Gaussian linear hidden Markov model, as described
in section 1.2.1. Taking the equations in model [1.1], matrices A and B are taken as
known and equal to the identity, while vectors µ and ν are known and equal to 0.
Matrices Σm and Σo are presumed to be diagonal, but unknown. The unknown
variables, represented the actual position, in this model are estimated using an EM
algorithm from the MARSS package. The estimated parameters are then used to
reconstruct the real trajectory by means of Kalman smoothing.

Figure 1.7 shows an example of trajectory smoothing. This smoothing process
greatly reduces the irregularities present in the trajectory. It is important to note that
we are now working with processed data. This transformation is shown here for
illustrative purposes, although its relevance in this specific case is somewhat
debatable.

Figure 1.7. Result of Kalman smoothing on part of the booby trajectories.
Smoothing clearly removes many of the erratic aspects of the trajectory.
For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

1.3.4. Identification of different activities through movement

We shall begin by using a three-state model. The choice of the number of states in
this case will be discussed later.

1.3.4.1. Definition of metrics
Our aim is to identify different activities within a trajectory. In this case, we wish

to distinguish between foraging behaviors (associated with rapid changes in
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direction) and, for example, direct movement toward a point of interest, which results
in a straighter trajectory. In this case, turning angle and step length appear to be the
most relevant metrics. Biological knowledge concerning the movement of these birds
supports the use of these metrics to distinguish between different behaviors.

In this example, we have chosen to adjust two models, which differ in the way in
which they treat step length and turning angles (and thus in the associated emission
distributions). The two pairs of metrics considered here are as follows:

– Step length and turning angle: a classic choice, as presented by Morales et al.
(2004): the emission distributions in this case are a gamma distribution for step
length and a circular (von Mises) distribution for angles. This model will be labeled
length/angle in our figures.

– Bivariate velocity change metric (Gurarie et al. 2009): the emission distributions
in this case are two independent normal distributions. This model will be labeled
bivariate speed in our figures.

1.3.4.2. Defining the starting point of the algorithm

These models do not include any covariates, and the initial distribution will not be
estimated. Each model is made up of 18 parameters (12 emission distribution
parameters and six transition matrix parameters). Iterative optimization applied to a
space of this type (such as the EM algorithm) may be affected by the chosen starting
point. In both cases, the choice of a suitable starting point for the algorithm is crucial.
One relatively generic approach involves a classification of k-averages (for the
selected metrics). This rapid classification can be used to identify plausible
parameters for different regimes; nevertheless, it is still important to ensure that the
result obtained from the algorithm has not been affected by the choice of starting
point.

1.3.5. Results

1.3.5.1. Characterization of hidden states

In the two packages used here, the parameters of the HMM are estimated using
maximum likelihood, and the sequence of most probable hidden states is retraced
using a Viterbi algorithm.

The hidden states in this model characterize the distribution of speeds and turning
angles. In terms of trajectories, this implies that a hidden state characterizes a
segment between two positions (10 s apart, in this case). States on the trajectory are
thus represented on these segments. In this unsupervised classification approach, the
labels assigned to hidden states (interpreted as behaviors) are arbitrary, and each state
must be characterized a posteriori. For ease of interpretation, we have chosen to
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categorize three states according to the average observed speed. State 1 corresponds
to the activity with the lowest average speed, while state 3 corresponds to the fastest
average speed.

Figure 1.8 shows the behaviors identified by inference along trajectories for the
two models used here.

Figure 1.8. Representation of states along trajectories estimated using two different
models. States are classified in order of relative speed, from slowest (1) to fastest (3).

For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

It is clear from the figure that the two models result in different nuances in the
trajectories.

– Using the length/angle metric, three states are clearly visible, notably a “slow”
state that characterizes the erratic phases of the trajectory. An intermediate state (2)
characterizes trajectories of medium speed and a medium level of eraticness, while
the third state reflects fast, direct movement.

– Using the bivariate velocity, metric, a similar third state is obtained, but there
are significant differences in terms of the distinction between the first two states. In
the first state, the bird appears to be “drifting”, at slow speeds with little variation. The
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second state appears to characterize all movement during which the bird is not resting,
with a high level of variation in terms of speed.

This initial interpretation can be extended by analyzing the distribution of step
length and turning angles by state3 (Figure 1.9).

Figure 1.9. Distribution of our chosen metrics for the states estimated using our two
models. For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

It is immediately evident that the distinction between states is not based on the
distribution of turning angles in either model. The influence of the step length
distribution is much clearer.

We see that, for the length/angle metric, the slow state corresponds to movements
of between 0 and 50 m; using the bivariate velocity metric, this same state corresponds
to movement over very short distances (of the order of 5 m). Consequently, state 2
covers different speed intervals; using the first metric, this state corresponds to step
lengths of 60–120 m, whereas for the second metric, this state corresponds to step

3 The “bivariate velocity” model can still be interpreted a posteriori using the classic step
length/angle approach, as shown here. In our example, as the majority of turning angles are
close to 0, the Vp component of the metric is closely correlated with the step length.
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lengths of 0–100 m, including much shorter distances (of around 20 m). Conversely,
step 3 (rapid movement) corresponds to similar movement patterns in both metrics.

This distinction can also be seen in the table of state contingencies by metric
(Figure 1.10).

Figure 1.10. Contingencies of estimated states for our two models. For a
color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

Once again, we see that state 1 of the bivariate velocity metric falls within state 1
of the Length/Angle metric; similarly, the third states of the two metrics correspond.
The metrics differ in the way in which state 2 is characterized: state 2 of the Bivariate
Velocity metric corresponds to a combination of states 1 and 2 of the Length/Angle
metric.

These differences are not surprising, given the differences between the underlying
metrics. We have chosen to highlight this difference here for illustrative purposes, but
it should be noted that, for a four-state model, the disparities are much smaller.

In this context, the characterization of states and the choice of the “best” model is
based on interpretation, drawing on biological knowledge of the species in question.
As is often the case, this unsupervised approach is most suitable for exploratory
purposes, and should be interpreted in light of the ecological context.
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1.3.5.2. State uncertainty

One advantage of the probabilistic version of supervised classification is the fact
that the uncertainty of classification can be quantified. In this case, we can consider
the evolution of the probability of being in state 1 or state 2 over time. Figure 1.11
illustrates this evolution for one of the three boobies.

Figure 1.11. Evolution of the probability of being in state 1 or state 2 over time, by
model. For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

We see that the level of uncertainty in terms of state classification is very low, as
the separation of distributions in each state is clear.

1.3.5.3. Inclusion of the nest distance covariate

Our model may be developed further by adding a covariate, in this case the bird’s
distance from the nest. We wish to determine whether changes in activity are
correlated with distance from the nest. Using the formulation given in equation [1.9],
we write:

ln
P (Zt = j|Zt−1 = i))

P (Zt = i|Zt−1 = i))
= β0(i, j) + β1(i, j)dt + β2(i, j)d

2
t ,
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where dt is the distance from the nest at time t. A quadratic component has been
added to take account of the potentially variable character of the relation between the
probability of transition and the covariate.

Figure 1.12 shows the evolution of the probability of state transitions as the
distance from the nest changes. We see that, overall, there is a high level of
persistence within states at any distance from the nest. Nevertheless, it appears that
the closer the bird is to the nest (to the right on the x axis), the less likely it is to
transition from activity 2 to activity 3. Note that the interest of the chosen covariate in
this specific case is debatable; based on the AIC, a model without this covariate
would be preferred.

Figure 1.12. Evolution of estimated transition probabilities as a function of distance
from the nest. The figure should be read as a transition matrix. The graph in the second
line, third column represents the evolution of the probability of a transition from state 2
to state 3 as a function of distance from the nest. As the distance variable has been
centered and reduced, the origin represents the mean distance from the nest across all
data points. For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

1.3.5.4. Choosing a number of states
The calculation of model selection criteria is valuable in helping to chose the

number of states to use, as is the AIC. Table 1.1 shows AIC and ICL scores for
different numbers of activities across our three trajectories.
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J 2 3 4 5 6 7
AIC 29,044 24,213 18,773 16,624 14,220 19,480
ICL 29,195 24,210 18,887 16,720 14,821 21,003

Table 1.1. Evolution of model selection criteria (AIC and ICL) as a function
of the number of hidden states J . In both cases, the best scores

are attained for a model with six hidden states

From a purely statistical perspective, a 6-state model appears preferable here.

Figure 1.13 shows states along a trajectory (using the bivariate velocity model)
alongside the speed characteristics of these states. We see that a classification into six
activities broadly corresponds to the creation of subdivisions in the intermediate state.
States previously characterized as belonging to activity 2 or 3 (Figure 1.9, top left)
are divided into four different groups in the new model. In our view, the choice of an
optimum number of states in this case should be guided by our capacity to interpret
the model, rather than by purely statistical considerations.

Figure 1.13. Study zone (red dot on the map) and three trajectories of three
different red-footed boobies. Measured over a time step of 10 s. For a

color version of this figure, see www.iste.co.uk/peyrard/ecology.zip
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2.1. Context

The biological lifecycle of organisms is characterized by a set of demographic
traits, known as life history traits (e.g. size, growth, age at maturity, lifespan, etc.),
which are often inter-related. In cases where these life history traits are positively
dependent on a single limited resource, they exhibit negative correlation. If traits
affect fitness components, in terms of survival and/or reproduction, then the
dependency relationship is known as an evolutionary trade-off (Stearns 1989; Roff
2002; Flatt and Heyland 2011). If life history traits were independent, then
individuals would simply seek to optimize each trait in order to maximize their own
fitness. In reality, however, resources (time, space, energy, etc.) are limited, and must
be shared, at individual level, between different traits that are essential to survival and
reproduction (Metcalf 2016). While there may be environmental or genetic bases for
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trade-off (e.g. pleiotropic effects of genes), differential resource allocation is a widely
cited explanation (Flatt and Heyland 2011; Descamps et al. 2016). For example, the
allocation of resources to traits associated with reproduction at the present time may
have a detrimental effect in terms of future survival or reproductive perspectives; this
is known as the cost of reproduction (Williams 1966). Evolutionary trade-offs are
considered as one of the most critical factors in the evolution of life history traits, and
play a key role in the evolution of organisms, as they limit the range of possible
adaptive variations (Stearns 1989; Flatt and Heyland 2011). One major challenge for
evolutionary biologists is to detect and observe these trade-offs in natural
environments, in order to understand and anticipate the evolution of life history traits
(Metcalf 2016).

2.2. The correlative approach to detecting evolutionary trade-offs in
natural settings: problems

While the existence of evolutionary trade-offs is widely accepted, their detection,
along with the explanation of the underlying mechanisms, continues to present a
major challenge in evolutionary biology. The study of evolutionary trade-offs was
long limited by the lack of appropriate methods and by the existence of a number of
confounding factors, due to the need to observe relevant life history traits and the
environmental context (e.g. resources), something which is difficult to do in the
natural environment.

Experimental studies can provide direct evidence of trade-offs by monitoring
inter-individual variability, a potential source of confusion (e.g. Svensson et al. 2002;
Bennett and Lenski 2007). This type of monitoring is not often possible in natural
environments, making it much harder to study trade-offs. For this reason, a
correlative approach between traits within a population is often used. Many empirical
studies expected to reveal evolutionary trade-offs in natural environments have found
positive (or null) correlations between life history traits where a negative correlation
(i.e. trade-off) was expected (Bleu et al. 2016; King et al. 2011). This may result
from high inter-individual variations in resource acquisition capacities, which may
mask underlying trade-offs (Hamel et al. 2009; Metcalf 2016).

A trade-off may be seen as the result of (1) the total quantity of available
resources, which depends on environmental conditions (mainly food supplies) and
resource acquisition capacities, and (2) the strategy for resource allocation between
two traits (van Noordwijk and de Jong 1986). Acquisition capacities and resource
allocation strategies vary as a function of the environment, which determines the
quantity of available resources, but also as a function of individual characteristics
(van Noordwijk and de Jong 1986). Different traits may be maximized
simultaneously in cases where resources are abundant, and in this case trade-offs may
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be masked. In cases where resources are limited, however, individuals with a greater
capacity to acquire resources will be at an advantage, partly or totally avoiding the
cost to which other individuals may be subject. If resources are limited, they will be
allocated to one or more priority traits. Thus, a changing environment will modify
both traits and co-variations between traits, which may be direct (e.g. a trade-off
between growth and survival) or deferred (e.g. a trade-off between present and future
reproduction). We thus expect to observe complex patterns of change in life history
traits in the context of environmental variations.

Van Noordwijk and de Jong (1986) illustrate this concept using a “Y” model for
cases where two traits (such as reproduction and survival) compete for the same
resource at individual level, and where individuals differ both in terms of their
capacity to acquire a resource (e.g. energy) and in the allocation of this resource to
the traits in question. In this case, the quantity of a resource available for each
characteristic is positively dependent on the total quantity of resources acquired and
negatively dependent on the proportion of resources allocated to the other
characteristic. In cases where inter-individual variations in resource acquisition is
high relative to variation in allocation between traits, trade-offs at individual level are
likely to go undetected in cases where their identification is based on inter-individual
comparison (Figure 2.1). As certain individuals have a higher resource acquisition
capacity than others (Hamel et al. 2009; Brown 2003), they have a greater ability to
invest in both traits, and trade-offs will be masked. Thus, a true trade-off at individual
level, based on limited resource allocation, may even translate to a positive
correlation between traits on the basis of inter-individual covariation. This type of
configuration is particularly frequent in natural conditions, where environmental
variability is high and cannot be controlled by analysts, and where life histories are
only partially observed.

2.2.1. Mechanistic and statistical modeling as a means of accessing
hidden variables

Given the problems described above, trade-off analysis should be carried out
using approaches that explicitly take account of the proximal mechanisms
responsible for trade-offs (resource acquisition/allocation), and should focus on the
individual level in order to take account of inter-individual resource acquisition and
allocation strategies. This type of approach allows us to identify trade-offs in
situations where identification is problematic due to natural variations. Nevertheless,
proximal mechanisms are rarely observed directly in a natural environment; their
hidden character means that evolutionary trade-offs remain hard to study.

In this chapter, we shall present two approaches based on both mechanistic and
statistical models used to represent the expected proximal mechanisms and the
conditioning structure which links life history traits, revealing the presence of
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underlying trade-offs. In the first example (section 2.3.1), the hidden proximal
mechanisms are represented by latent variables, taking the form of theoretical
quantities or variables that cannot be measured directly, but which may be supplied in
the form of imperfect cues (observed variables). Trade-offs may thus be identified
conditional on the status of the individuals for which variables have been observed.
In other words, these approaches do not use data about resources themselves, but
rather data concerning the results of individual acquisition and allocation of
resources, known as proximal signals, which reflect energy sinks. In this example, a
hierarchical Bayesian model is used to infer the existence of a trade-off. The second
example (section 2.3.2) illustrates the use of another strategy based on the simulation
of resources acquired at individual level. In this case, a mechanistic model, taking
account of tree physiology, is used to obtain a value for the resources available to
each individual. This value is then used as an input variable for a statistical model
describing the distribution of the resource between different energy sinks.

Figure 2.1. Illustration of van Noordwijk and de Jong’s (1986) “Y” model. Example of
a trade-off between two traits 1 and 2, observed at population level (i.e. based on
inter-individual comparison). A) In cases where the variation in resource acquisition is
high in comparison with variations in allocation, a positive correlation between traits
is observed at population level, masking the underlying trade-off (red). B) In cases
where the variation in resource acquisition is low (limited resources) in relation to
variations in allocation within the population, a negative correlation between traits is
seen at population level, revealing the underlying trade-off (green). For a color version
of this figure, see www.iste.co.uk/peyrard/ecology.zip
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2.3. Case study

2.3.1. Costs of maturing and migration for survival: a theoretical
approach

We shall begin with a simple theoretical example of a trade-off between two life
history tactics (e.g. reproduction and migration) in relation to a survival event. These
three life history traits will be considered as the expression of latent processes, which
are interdependent with regard to acquired resources (energy). The resources acquired
by the individual, along with their allocation, cannot be observed directly, and are thus
hidden states. Nevertheless, the expression of the life history traits resulting from this
acquisition and from the differential allocation of resources can be observed.

2.3.1.1. The system

Our example is based on the lifecycle of the Atlantic salmon (Salmo salar),
focusing on the juvenile phase, which is characterized by a sequence of events
corresponding to (1) the decision to attain sexual maturity for the purposes of
reproduction, (2) the decision to migrate, which is closely linked to growth, and (3)
survival. Our approach is based on dynamic energy budget (DEB) theory (Sousa
et al. 2010), which implies a division of the energy acquired by individuals (reserve)
into structure and maturity (Kooijman et al. 2008). The justification for this
distinction lies in the fact that maturity investment mostly takes the form of lipid
storage, while structure is primarily dependent on the accumulation of protein
resources (Sousa et al. 2010). Individual energy states will be defined as a function of
these two bodily components. We shall also suppose that maturity storage is
essentially used to fuel maturation processes (e.g. sexual development) and
maintenance, while structural investment (i.e. growth) is essential for migration. Our
hypothesis is that organisms are informed of their “state” (i.e. maturity and structure)
by certain proximal signals (e.g. hormones). These proximal signals cannot be
measured directly; they result from the acquisition and allocation of resources and
are not observable. However, the mass of an individual may be used as an observable
signal for stores, while size constitutes an observable signal for structure.

2.3.1.2. Modeling life history decisions and proximal signals at the individual
level

Life history decisions: In our case, the two life history strategies and survival are
observed binary variables, respectively Y = (Y1, Y2, Y3)′. We have chosen to model
life history decisions in terms of maturation and migration using a threshold
modeling approach. We thus consider that individual decisions concerning
maturation and migration result from a comparison between an intrinsic factor of the
organism, represented by a proximal signal, and a threshold value. For an individual
i, this implies that if the value of the proximal signal Zi is higher (respectively,
lower) than a threshold θi, then the expression of a phenotype, such as “mature”
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(respectively, immature) will be triggered. If Yi is the binary indicator of the
phenotype (e.g. taking 1 for mature and 0 for immature), then we have:

Yi =

(
1 if Zi > θi
0 if Zi ≤ θi

)

The proximal signal Zi varies between individuals as a function of the
environment, while the threshold θi also varies between individuals but is
independent of the environment. The threshold is thus considered as an intrinsic
property of individuals, which is independent of Zi.

The proximal signal as a latent variable: Although the proximal signal Zi is not
observable, we may measure an observable signal Xi (e.g. size or mass) which
correlates to Zi. The distribution of the unknown proximal signal Zi may be
expressed in a manner conditional on the observable signal Xi with a certain residual
error εi:

Zi = F (Xi) + εi

where F is a function, for example a linear relationship, summarizing the link
between the proximal signal and the observable signal. The residual error εi is
assumed normally distributed with a mean 0 and standard deviation σZ :

εi ∼ N(0,σZ)

This formulation has the advantage of being assumption-free with regard to the
distribution of Xi. This means that statistical analysis is more flexible, as it is
independent of the procedure used to collect observations Xi.

This formulation corresponds to the latent environmental threshold model (LETM)
used by Buoro et al. (2012) to study life history decisions using empirical data. One
important difference here is that, for reasons of identifiability and with no loss of
generality, we shall take the threshold as fixed across individuals, whereas this value
varies between individuals in the LETM.

Returning to our example, each successive event (sexual maturation, migration and
survival) is characterized by a proximal signal, respectively, Z = (Z1, Z2, Z3), and an
associated threshold Θ = (θ1, θ2, θ3).

2.3.1.3. Modeling evolutionary trade-offs

Expected cost of maturation and migration with respect to survival: In our case,
the processes connected with maturation and migration are not in direct competition,
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and may thus occur simultaneously. However, we suppose that sexual maturation and
preparation for migration all require energy, a resource which is also required to ensure
survival. We thus expect to observe evolutionary trade-offs. Without becoming overly
specific, let us establish some hypotheses concerning the relationships between life
history traits:

1) The decision to mature and survive both depend positively on the amount of
reserve. Given that the maturation process and survival are interdependent with regard
to the quantity of stored energy available, we expect to observe a negative trade-off,
that is, a cost of reproduction for survival.

2) Survival is negatively dependent on the state of the structure. The decision to
migrate requires high growth (structural increase) and has a negative effect on chances
of survival. For example, large individuals have a higher maintenance cost than smaller
individuals, that is, energy requirements increase as size increases.

Implementation of costs with regard to survival: The survival state of an
individual Z3,i is thus dependent on the relation between the state of reserves Z1,i

and the structure Z2,i. Our model accounts for potential underlying trade-offs using
coefficients that affect the survival state Z3,i based on earlier life history decisions
(maturation and migration). A coefficient α adjusts the status of the reserves Z2,i if
the individual has already reached maturity (Yi,1 = 1), while a coefficient β is used
to adjust the survival status Yi,3 if the individual decides to migrate (Yi,2 = 1). Thus,
for a given individual i, the proximal signal associated with survival Zi,3 is

Z3,i =
Z1,i

Z2,i
× (α× Y1,i)× (β × Y2,i),

where Z1, Z2 and Z3 are, respectively, the proximal signals for the maturation,
migration and survival processes; Yi,1 and Yi,2 are binary indicators of the decision
to mature and the decision to migrate. A linear transformation may be applied, for
example using a natural logarithm, for ease of use. Parameters α and β are
coefficients indicating the proportion of the remaining state conditional on life
history decisions, that is, reflecting the effects of maturation and migration,
respectively, on survival. Using a natural logarithm, if these parameters have a value
of 1, there is no trade-off; if the coefficients are less than 1, there is a negative
trade-off, while coefficients greater than 1 reflect a positive effect. This formulation
implies that, while there is no cost for maturation or reproduction (Y1 = 0 or α = 1),
the higher the maturation status (i.e. the greater the store), the higher the probability
of survival (at constant migration status, i.e. structure). Conversely, the higher the
migration status, the lower the probability of survival. Individuals who migrate invest
their energy in growth rather than storage. The conditional structure of the model can
be illustrated using a directed acyclic graph (Figure 2.2).
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Figure 2.2. Directed acyclic graph of the model. The squares represent observable
data, while the circles show unknown quantities to estimate, i.e. latent variables.
The plain and dashed arrows represent stochastic and determinist dependency,
respectively. The model is designed for observations of phenotyped individuals hence
the multiple frames, denoting a loop for i = 1, 2, ..., N individuals

2.3.1.4. Implementation and evaluation

The Bayesian framework, using Markov chain Monte Carlo (MCMC)
mechanisms, offers a flexible approach to the analysis of latent variable models and
their conditional structure (Clark 2005). This approach is used here to estimate the
parameters of interest in our model. Bayesian analysis requires the use of a priori
probability distributions for the parameters of the model, that is, the unknown
parameters (α, β, Θ and σs; Figure 2.2). In this case, all of the a priori distributions
are non-informative. The joint a posteriori distributions for all of the unknowns in
the model were obtained by MCMC sampling in the form used in JAGS, a program
called up in R using the rjags packet (Plummer 2003). The convergence of the
MCMC sampling was evaluated using the Brooks–Gelman–Rubin convergence
diagnostic1 (Brooks and Gelman 1998).

1 The code for the model and the R script used to generate data are available at:
https://oliviergimenez.github.io/code_livre_variables_cachees/buoro.html.

Copyright Iste 2022 / File for personal use of Valentin Lauret only



Detection of Eco-Evolutionary Processes in the Wild 35

2.3.1.5. Identifying trade-offs

The performance of our model for the statistical inference of parameters and in
highlighting trade-offs is demonstrated here using simulated data based on observed
life histories for juvenile Atlantic salmon. In order to ensure that our data are
biologically realistic, we generated phenotypes based on the parameters of a
length–weight relationship established using real data. These original data were
collected from individuals via capture–recapture in the context of a long-term
capture–recapture program for an Atlantic salmon population in the Scorff River
(Morbihan, Brittany). We generated our simulated data using the model itself, with
known parameter values (the fixed values are shown in Figure 2.3), considering three
possible scenarios: (A) a negative trade-off (α = 0.3 and β = 0.8), (B) no trade-off
(α = 1 and β = 1), and (C) a negative trade-off for maturation, but positive
correlation for the decision to migrate (α = 0.3 and β = 1.2). We generated 20 data
sets of 500 individuals for each scenario. Statistical inference was then carried out
using the simulated data to verify whether the model provided precise estimations of
the parameters (α, β, Θ and σs).

For all scenarios, a comparison of a posteriori and a priori distributions shows
that the a priori distributions were adjusted using the information contained in the
data. The model provides a correct estimation of the residual variances σs and
thresholds Θ; the a posteriori medians of these parameters were also close to their
real values (Figure 2.3). The a posteriori distributions of α and β were correctly
estimated, indicating that these parameters could be estimated, whatever the direction
and scale of trade-off. Note that these parameters may be limited by identifiability
issues, given the information available in the data. While we did not observe
contrasting decisions in individual life histories (e.g. if all individuals mature,
migrate and/or survive), the available information is necessarily based on the
observed phenotypes alone.

In spite of the introduction of proximal mechanisms, our model remains relatively
basic in the form presented here. It can be easily simplified (e.g. to focus on one
life history strategy, using a linear model instead of the threshold model) or extended
(e.g. with the addition of an observation process, a cost of maturing for migration,
estimation of individual thresholds, etc.). Finally, while our simulated data draws on
a simple energy allocation structure, more complex structures, such as a bioenergetic
model, may be used. It is important to note that the analytical power of the model
depends on the link between the hidden and observed variable, and, crucially, on the
available data (e.g. in terms of the variability of life history strategies and traits).
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Figure 2.3. A posteriori distributions of parameters in the latent model (logarithmic
scale) for each scenario: A) negative trade-off, B) no trade-off and C) positive
trade-off (migration only), for 20 simulated data sets. The median (black dot) and 95%
confidence interval (continuous lines) were obtained on the basis of 25,000 MCMC
iterations. Real values are shown as dashed red lines. For a color version of this figure,
see www.iste.co.uk/peyrard/ecology.zip
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2.3.2. Growth/reproduction trade-off in trees

One key question linked to life history strategies concerns the expression of
potential trade-offs between growth and reproduction, reflecting the fact that an
individual cannot invest in both traits simultaneously. As we have seen, the main
difficulty in studying these trade-offs within natural populations resides in the
variability of individual resource acquisition. In this example, we illustrate the
combination of a mechanistic eco-physiological model, used to simulate available
resources at individual level, with a model representing the distribution of these
resources between different energy sinks. Potential trade-offs are taken into account
by means of correlated random effects between the different energy sinks. Inference
is carried out using a Bayesian approach. The model is applied to data for the Atlas
cedar (Cedrus atlantica), a Mediterranean conifer species2.

2.3.2.1. The studied system

The Atlas cedar, Cedrus atlantica, is a coniferous species that originates from
the Mediterranean basin. Individual trees carry both male and female cones. As in
many tree species, male reproduction (from the initiation of the reproductive bud to
the development of mature pollen) and growth occur over the course of a single year;
female reproduction (from cone initiation to maturation) takes two years. The site of
study is a 35-year experimental plantation in Mont-Ventoux in the south of France.
All of the trees were planted and pedo-climatic conditions are similar across the site.
The initial tree density was 2,700 trees per hectare. In this experiment, two different
thinning strategies were applied, resulting in contrasting population densities at the
point of observation: high density (1,200 trees per hectare) and low density (250 trees
per hectare).

The data used here corresponds to 40 trees in the high-density population and
31 trees in the low-density population, randomly sampled and monitored each year
from 2002 and 2005. The diameter of each individual tree i was measured at 1.3 m
from the ground (DBHi,t) for each year t. The annual basal area increment (BAIobs

i,t )
was calculated as BAIobs

i,t = (π ×DBH2
t /4) − (π ×DBH2

t−1/4). The abundance
of male cones (Mi,t) was recorded as a qualitative ordered variable using a scoring
system from 0 to 4, with “0” signifying that no male cones were observed; “1” few
male cones dispersed in the canopy; “2” abundant male cones on one branch; “3”
abundant male cones on two branches; “4” abundant male cones throughout the whole

2 The full article is available at: https://www.biorxiv.org/content/10.1101/2021.01.26.
428205v1, while the data and the Bayesian model are available at: https://oliviergimenez.github.
io/code_livre_variables_cachees/buoro.html.
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of the tree canopy. These scores were then converted into multinomial observations
IMCobs

i,t as follows:






Mi,t = 0 ⇒ IMCobs
i,t = [1, 0, 0, 0, 0]

Mi,t = 1 ⇒ IMCobs
i,t = [0, 1, 0, 0, 0]

Mi,t = 2 ⇒ IMCobs
i,t = [0, 0, 1, 0, 0]

Mi,t = 3 ⇒ IMCobs
i,t = [0, 0, 0, 1, 0]

Mi,t = 4 ⇒ IMCobs
i,t = [0, 0, 0, 0, 1]

[2.1]

Mature female cones (FCobs
i,t ) were counted individually from the ground, across

the whole canopy, using binoculars.

2.3.2.2. Resource simulation at individual level

Simulations from the CASTANEA eco-physiological model were used to
determine a level of resources, taking account of the characteristics of individual
trees in terms of diameter, leaf area index, allometric relationship and population
density (Davi et al. n.d.; Dufrêne et al. 2005; Davi and Cailleret 2017). Resources are
represented by net primary productivity, NPP , which corresponds to the difference
between gross photosynthesis and autotrophic respiration. CASTANEA takes
account of forest characteristics (such as tree height and diameter, density, nitrogen
and sugar concentrations), soil conditions (such as texture) and climate. Climate was
assessed using local variables, measured from 1999 to 2005 at a weather station
located 1.96 km from the study site. Additional data were obtained from the national
meteorological database (SAFRAN) using measurements from 1989 to 2015, scaled
using statistical regression to correspond to local measurements (Quintana-Seguí
et al. 2008). The variables used by the CASTANEA model include precipitation;
minimum, maximum and mean temperature; overall radiation; relative humidity; and
wind speed. The model was validated for the study site and for both stand densities
based on its capacity to simulate a mean annual growth value. The data and output
for the CASTANEA model was evaluated (Figure 2.4) using mean quadratic error
(RMSE), the determination coefficient (R2) and percentage bias (PB). Figure 2.5
shows resource distribution between individuals simulated using CASTANEA. The
effect of density on resource availability is clearly visible.

2.3.2.3. Modeling evolutionary trade-offs

Resource allocation to energy sinks: The resource level (NPPi,t) for an individual
i in year t determines its growth (BAIi,t), the number of initiated reproductive buds
(IBi,t) and the probability of female cone survival (pFCS

i,t ). Random effects (εx,i) were
used to study potential trade-offs between the three sinks. Two alternative models
were compared. In model 1, inter-individual variation acts directly on the quantity
of resource available (i.e. corresponding to the slope). In model 2, inter-individual
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variation is directly connected to the trait (i.e. corresponding to the intercept). The
model is defined as follows (see Figure 2.6):






BAIi,t = (γd + Y ∗ ε1,i︸ ︷︷ ︸
model 1

) ∗NPPi,t + (1− Y ) ∗ ε1,i︸ ︷︷ ︸
model 2

IBi,t = Xi,t ∗ ((β1,d + Y ∗ ε2,i︸ ︷︷ ︸
model 1

) ∗NPPi,t + (1− Y ) ∗ ε2,i︸ ︷︷ ︸
model 2

)

logit(pFCS
i,t ) = β0 + (β2,d + Y ∗ ε3,i︸ ︷︷ ︸

model 1

) ∗NPPi,t + (1− Y ) ∗ ε3,i︸ ︷︷ ︸
model 2

ε ∼ N3 (0,
∑

) .

[2.2]

Figure 2.4. Comparison of observed and simulated ring width from 1989 to 2015 and
for two stand densities. a) Observed data are shown in light blue, while simulated ring
widths are shown in dark blue. Mean values are shown along with standard deviations
(broader strip). b) The dashed black line corresponds to the 1:1 line, and the red line
corresponds to the regression between simulated and observed ring width values. For
a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip
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where the random variable Y ∼ Bernoulli (pY ) is used to select model 1 or 2, based
on its value, 0 or 1. Parameters γd, β1,d and β2,d are the slopes cconnecting resources
to different sinks. The parameter β0 is fixed to limit pFCS

i,t ≈ 0 when NPPi,t = 0.
The random variable Xi,t ∼ Bernoulli (pX) indicates whether or not an individual
i produces reproductive buds in year t. Resource allocation constraints for all three
sinks are accounted for using individual effects (ε1,i, ε2,i, ε3,i)

T ∼ Normal3 (0,Σ).
Correlations are calculated as ρl,k = Σl,k/ (Σl,lΣk,k).

Figure 2.5. Boxplot of resource (net primary productivity, in gC.m−2.year−1)
simulated using the eco-physiological CASTANEA model. For a color

version of this figure, see www.iste.co.uk/peyrard/ecology.zip

Modeling reproduction: Initiated reproductive buds (IBi,t) develop into male
cones (IMCi,t) and a number of initiated female cones (IFCi,t) depending on the
phenotypic gender (PGi,t) of an individual i in year t. Phenotypic gender
corresponds to “maleness” Lloyd 1980), which is the ratio of male to female initiated
cones. Thus,






logit (PGi,t) ∼ N
(
P̄G,σPG

)

IMCi,t = PGi,t ∗ IBi,t

IFCi,t = (1− IMCi,t) .
[2.3]
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Figure 2.6. Illustration of the developed Bayesian model, with process and data
models. The rectangles correspond to observed variables and the ellipses to
non-observed (i.e. latent) variables. The previous year (t − 1) is shown in gray and
the current year (t) in black. Resources, in terms of net primary productivity (NPP), are
simulated using the CASTANEA eco-physiological model and climate data. Resources
are then allocated to tree growth (Basal Area Increment, BAIi,t) and to reproduction,
initially represented by initiation buds, IBi,t. Buds are then subdivided into male
(IMCi,t) and female cones (IFCi,t) according to phenotypic gender (not shown, noted
PGi,t). A given year t will see the maturing of male cones (Mi,t) alongside that of
female cones, which depends on the quantity of buds initiated in the previous year
(t− 1)

Observation process: The available data (see 2.3.2.1) consists of repeated
observations of growth, male reproduction and female reproduction. Observed
growth (BAIobs

i,t ) is considered to be linked to the latent growth variable of the
process model (BAIi,t) as follows:

BAIobs
i,t ∼ N (BAIi,t,σBAI) . [2.4]
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The number of initiated male cones (IMCi,t) is a continuous variable, while the
observed abundance of male cones (IMCobs

i,t ) in our example is a categorical variable.
IMCi,t and IMCobs

i,t are linked here using the following model:

{
πi,t = [F (s0), F (s1)− F (s0), F (s2)− F (s1), F (s3)− F (s2), 1− F (s3)]

IMCobs
i,t ∼ Multinomial (πi,t, 1) ,

[2.5]

where F (·) indicates the distribution function of a normal distribution of mean
IMCi,t and variance σIMC . {s0, s1, s2, s3} are fixed thresholds that determine the
limit between male bud scores. Finally, the observed number of female cones
(FCobs

i,t ) follows a Poisson distribution of parameter IFCi,t, in which the latent
variable denotes the number of initiated female cones:

FCobs
i,t ∼ P(pFCS

i,t ∗ IFCi,t−1 ∗ IBi,t−1). [2.6]

2.3.2.4. Implementation and fitting

Parameters were estimated using JAGS (Plummer 2003) (version 4.3.0) in R (R
Core Team 2018) (version 3.6.3). Non-informative prior distributions were defined for
all parameters. Three MCMC of 200,000 iterations were simulated. The fitting of the
model to the data was evaluated by calculating the Bayesian p-value for quantitative
variables (Gelman et al. 1996) and using the Brier score for the qualitative variable
IMCobs

i,t .

Model 2, in which individual effects are not linked to resources, performed best.
Thus, it appears that NPP is not the only factor responsible for correlations between
energy sinks. The NPP may be involved in an indirect manner via a density effect,
whereby individual NPP is lower in high-density stands, but other factors, such as
the availability of nitrogen, minerals or other energy sources, seem to contribute to
correlations.

2.3.2.5. Trade-off identification

The estimated correlations between individual effects associated with each energy
sinks (Figure 2.7) show that individuals exhibiting high growth rates also produce
large numbers of reproductive buds (ρ1,2 = 0.54[0.32, 0.70] with pr[ρ1,2 > 0] = 1).
There is thus no visible trade-off between the two functions. However, a trade-off is
seen between the number of initiated buds and the survival of female cones from 1
year to the next (ρ1,3 = −0.36[−0.65, 0.24] with pr[ρ1,3 < 0] = 0.91). Thus, trees
which invest more resources in maturing cones produce fewer reproductive buds. This
relationship has been widely observed in a variety of plant species (Bell 1980; Knops
et al. 2007).
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Trees in the low density stand generally allocate more resources to growth than
to reproduction (pr[γ1200 > γ250] = 0.25), unlike individuals in the high-density
stand (pr[β1,1200 > β1,250] = 0.86 and pr[β2,1200 > β2,250] = 0.94). Furthermore,
the correlations between sinks in terms of resource allocation are also dependent on
density; these relationships are more clearly visible in the high-density stand, where
resource levels are lower.
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3.1. Introduction

Ecology may be defined as the study of living organisms in interaction with their
environment. At the heart of this discipline lie two key questions: how many
individuals are there in a population and where are they? The first question relates to
the dynamics of populations, while the second concerns the distribution of species.
These questions have long attracted the interest of researchers; for example, in the
early 19th century, Laplace attempted to estimate the size of the French population
(Amorös 2014), while at the start of the 20th century, Grinnell (1917) focused on
formalizing the role of species in ecosystem functioning.

Statistical research in relation to these questions continues to this day, notably
motivated by of the analysis of data generated using new technologies (Gimenez et al.
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2014b). One issue that has attracted particular attention is the difficulty of observing
individuals and species in natural conditions – essentially, a detection problem (Royle
and Dorazio 2008). Given the imperfections inherent in the detection of individuals
and species, variables such as whether an individual is dead or alive, or whether or not
a species is present in a particular location, are only partially observable; as such, they
constitute hidden variables, in the sense defined in the introduction to this book.

In this chapter, we shall show how hidden Markov models (HMMs) can be used
to develop capture–recapture and occupancy models, traditionally used to study the
dynamics of populations and the distribution of species in a context of imperfect
detection. We shall show how the HMM formulation permits the estimation of
hidden variables in two different case studies. The question of population dynamics
will be illustrated through an estimation of the prevalence of wolf-dog hybrids in
Italy, while the distribution of species will be illustrated by examining the
distribution of wolves in France.

3.2. Overview of HMMs

HMMs are a class of statistical models, generally used for analyzing data from
systems with temporal dynamics. An ecological process may be modeled using a
state process (or system process) of which the future states are solely dependent on
current states: this is the Markov hypothesis. In an HMM, this process is not
observed directly, but is hidden (latent). Observations are made based on a
state-dependent process, controlled by the underlying state process. These
observations are essentially considered to be noisy measures of system states with a
specific dependence structure. HMMs are a specific class of state space models with
a finite number of states (Gimenez et al. 2012; Auger-Méthé et al. 2020).

In formal terms, an HMM consists of an observed state-dependent process
Y 1, Y 2, . . . , Y T and a non-observed (hidden) state process Z1, Z2, . . . , ZT . HMMs
are often represented schematically in the way shown in Figure 3.1, which highlights
the way in which observations are conditional on states, and illustrates the Markovian
structure of the sequence of states.

Three components are needed to fully specify an HMM with N states. The first
component is the initial distribution δ =

(
Pr(Z1 = 1), . . . ,Pr(Z1 = N)

)
, which

combines the probabilities of being in different states at the start of the sequence. The
second component is made up of the probabilities of transition
γij = Pr(Zt+1 = j|Zt = i) between states i and j, generally grouped into an
N × N transmission matrix, Γ = (γij). The third component is the distribution of
the collected observations f(yt|Zt = i), used to facilitate the calculation of
likelihood in a diagonal matrix of dimension N × N , denoted as
P(yt) = diag

(
f(yt|Zt = 1), . . . , f(yt|Zt = N)

)
. In this chapter, only discrete and
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univariate distributions of observations will be addressed, but continuous
distributions (Choquet et al. 2017; Mews et al. 2020) and multivariate distributions
(Choquet et al. 2013; Laake et al. 2014; Johnson et al. 2016) may also be used.

Figure 3.1. Schematic illustration of a hidden Markov model

The likelihood L(θ | y1, . . . , yT ) of the unknown parameters (θ) given an
observed sequence (Y 1, . . . , Y T ) is expressed formally as:

L(θ | y1, . . . , yT ) = fθ(y
1, . . . , yT )

=
N∑

z1=1

. . .
N∑

zT=1

fθ(y
1, . . . , yT |z1, . . . , zT )fθ(z1, . . . , zT )

=
N∑

z1=1

. . .
N∑

zT=1

δz1

T∏

t=1

fθ(y
t|zt)

T∏

t=2

γzt−1,zt .

The first step is obtained by applying the law of total probability; the second step
is a result of the Markovian dependency structure of the model.

The problem lies in the fact that the calculation of the likelihood of an HMM in
this form requires NT summations, making it time consuming, if not impossible, to
evaluate. One solution is to use a more efficient method to calculate the likelihood.
In this chapter, we have chosen to use the forward algorithm, which draws on the
dependency structure of the model, instead of a “brute force” approach that consists
of summing all possible series of states.

Using the forward algorithm, likelihood is calculated as a matrix product:

L(θ | y1, . . . , yT ) = δP(y1)ΓP(y2) · · ·ΓP(yT−1)ΓP(yT )1,

where 1 is a column vector of ones. The complexity of this calculation is linear as
a function of the number of observations, meaning that likelihood can be evaluated
rapidly in most of the cases encountered in ecology. The parameters θ of an HMM
can be calculated by maximum likelihood, using optimization routines (such as the
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Newton–Raphson method) to maximize likelihood numerically. This is the approach
used here, implemented using R.

Once the parameters have been estimated, the next step is to infer the hidden states
z1, . . . , zT . In the context of HMM, this step is known as decoding. In this case, we
use global decoding to look for the series of states (g1, . . . , gT ) with the highest joint
probability (this differs from local decoding, in which we search for the most likely
value of zt taken separately). In other terms, we wish to find

(g1, . . . , gT ) = argmax
(z1,...,zT )

Pr(Z1 = z1, . . . , ZT = zT | y1, . . . , yT ).

This is a relatively complex optimization problem; however, it can be solved
efficiently using the Viterbi algorithm (Rabiner 1989).

For more details on HMMs in general, see Zucchini et al. (2016); in the ecological
context, see McClintock et al. (2020).

3.3. HMM and demography

3.3.1. General overview

The hidden (or partially hidden) variables encountered in the study of animal
populations are living/dead; developmental states, which are generally discrete, such
as sexual maturity (Nichols et al. 1994); epidemiological states (Marescot et al.
2018); or social states (Dupont et al. 2015). These states can be hard to measure in
the field. It is often impossible to track animals in their environment in an exhaustive
manner, that is, in the way human patients might be monitored in the context of a
medical protocol. Data are often obtained in capture–recapture form, indicating
whether or not an animal has been detected. If an individual is not detected, it may be
possible to infer its state; if an individual is detected, then its state may be known
perfectly or imperfectly. HMMs are a natural choice for use in these contexts, as they
can be used to formalize the analysis of noisy measures of demographic states.

One example involves the two states “dead” and “alive”, with Zt = V denoting
“alive at time t” and Zt = M “dead at time t” (Gimenez et al. 2007). The “dead” state
here is absorbing as an individual cannot leave the state once it has entered it (except
in the context of zombie movies). An illustration of the corresponding HMM is given
in Figure 3.2.

As we have seen, an HMM is defined using three components. The initial
distribution is:

V M
( )δ = 1 0 .
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Figure 3.2. Two-state capture–recapture model expressed in HMM form

Let φ be the probability of survival over an interval of time. The transition
probability matrix is given by:

Γ =

V M[ ]
φ 1− φ V
0 1 M

.

Finally, the distribution of observations Y t conditional on the states Zt is a
Bernoulli distribution of parameter p, where p is the probability of detection, if
Zt = V , or a Bernoulli distribution of parameter 0 if Zt = M :

P(yt) =

V M[ ]
py

t

(1− p)1−yt

0
0 1− yt

.

Thus, if the individual is dead, Zt = M , then the probability of observation is null,
Pr(yt = 1|Zt = M) = 1− yt = 0, and the probability of it not being observed is 1,
Pr(yt = 0|Zt = M) = 1− yt = 1. If the individual is alive, Zt = V , the probability
of observing it is Pr(yt = 1|Zt = V ) = py

t

(1 − p)1−yt

= p, and the probability of
it not being observed Pr(yt = 0|Zt = V ) = py

t

(1− p)1−yt

= 1− p.

The contribution of each individual to the overall likelihood of the data set can then
be calculated using these components. For example, consider a study that takes place
over the course of T = 3 years, and let us take an individual observed in the first and
third years, but not in the second year: (y1 = 1, y2 = 0, y3 = 1). This individual’s
contribution to the likelihood is written as:

L(φ, p | y1, y2, y3) = fφ,p(y
1, y2, y3) = δP(y1)ΓP(y2)ΓP(y3)1,

with

P(y1) = P(y3) =

V M[ ]
p 0
0 0
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and

P(y2) =

V M[ ]
1− p 0
0 1

.

We can verify (with a little patience) that this matrix product is equal to pφ(1 −
p)φp, generally conditioned with respect to the first capture, with an assigned value of
1, such that fφ,p(y1, y2, y3) = φ(1− p)φp.

Once the probabilities of survival and detection have been estimated, it should, in
theory, be possible to calculate life expectancy based on the inferred dead/alive status
of individuals, reconstructing the sequence of states for each individual.

This two-state example may be generalized to give a multi-state capture–recapture
model (Lebreton et al. 2009), incorporating reproductive states. This model may be
formulated as a three-state HMM, including a “dead” state and two reproductive states,
R and NR: Zt = R for “alive and reproducing at time t” and Zt = NR “alive
and not reproducing at time t”. A schematic representation of this HMM is shown in
Figure 3.3.

Figure 3.3. Multi-state capture–recapture model expressed in HMM form

The first component of the associated HMM is the initial distribution:

δ =
R NR M

( )δR 1− δR 0

Let φR be the probability of survival of reproducing individuals, φNR that of
non-reproducing individuals, ψNR,R the probability of an individual, which is not
reproducing at time t entering the reproductive state at time t + 1, and ψR,NR the
probability that an individual, which is in the reproductive state at time t, will have
left this state at time t+ 1. The transition matrix is written as:

Γ =

R NR M
[ ]φR(1− ψR,NR) φRψR,NR 1− φR R

φNRψNR,R φNR(1− ψNR,R) 1− φNR NR
0 0 1 M
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Finally, let pR be the probability of detection of reproducing individuals (and pNR

that of non-reproducing individuals). The diagonal matrix giving the distribution of
observations conditional on states is thus:

P(yt) =

R NR M








pI(yt=R)
R (1 − pR)I(y

t=0)0I(y
t=NR) 0 0

0 pI(yt=NR)
NR (1 − pNR)I(y

t=0)0I(y
t=R) 0

0 0 I(yt = 0)

,

where I(yt = k) is the indicator function, taking a value of 1 when yt = k and 0
otherwise. The distribution implied here is a generalization of the Bernoulli
distribution for more than two possible outcomes, that is, a categorical (single-trial
multinomial) distribution.

For example, to study reproduction costs, ecologists may compare the probability
of reproducing in year t + 1 based on the individual’s reproductive, (ψR,R = 1 −
ψR,NR), or non-reproductive, (ψNR,R), state in year t; the differences in survival
rates between reproducing (φR) and non-reproducing (φNR) individuals may also be
studied in this way.

While multi-state models were originally developed for use in estimating
demographic parameters (survival, movement, etc.), which depend on geographical
sites (Brownie et al. 1993), there are few real limits to their application in ecology
(Gimenez et al. 2012).

Once the parameters have been estimated, the subjacent states can be inferred. In
this way, it becomes possible to calculate particularly interesting ecological quantities.
Examples of this include the sex ratio (Pradel et al. 2008), where the states are the sex
of individuals; reproductive success over a lifetime (Rouan et al. 2009b; Gimenez
et al. 2012; Desprez et al. 2018); or the number of sick individuals (Buzdugan et al.
2017) in the case of epidemiological states.

One tacit hypothesis that is inherent in multi-state levels is that the state of an
individual can be measured without error. In practice, however, it can be difficult to
assign a sure state to individuals, for example when observing reproduction in the
field. A reproductive state can be confirmed if a female is seen with one or more
young, for example, but if a female is observed alone, status assignment is less certain.
The HMM approach takes account of this element of uncertainty in the assignment of
states to individuals (Dupuis 1995; Pradel 2005; Gimenez et al. 2012), as we shall see
in the following example.
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3.3.2. Case study: estimating the prevalence of dog–wolf hybrids with
uncertain individual identification

The points made above can be illustrated using an example, in this case relating
to the estimation of the prevalence of hybrids in a wild animal population. Our case
study concerns cross-breeding between dogs and wolves in the Tusco-Emilian
Apennines National Park, Italy (Santostasi et al. 2019). The data were obtained using
wolf feces collected from August 2016 and May 2017, from which DNA was
extracted, amplified and sequenced (Caniglia et al. 2014); using these DNA data, a
distinction can be made between wolves, hybrids and animals of uncertain status.
There were five capture sessions, each spanning 2 months, featuring samples from 39
individuals (19 wolves, 12 hybrids and eight uncertain). In the original study, the
authors compared different models, including or ignoring the difference between
hybrid and parental individuals in terms of detection and assignment probabilities.

The possible states included parental Zt = P , hybrid Zt = H or dead Zt = M ,
with observations denoted as yt = 0 for undetected, yt = 1 for observed parental,
yt = 2 for observed hybrid and yt = 3 for observed, uncertain status. All parameters
in the model used here are constant, except for survival, which is state dependent;
hence, φP &= φH .

The components used to write the likelihood of the HMM are the initial distribution

P H M
( )δ = δP 1− δP 0 ,

the transition matrix

Γ =

P H M
[ ]φP 0 1− φP P
0 φH 1− φH H
0 0 1 M

and the diagonal matrix which gives the distribution of observations conditional to the
states

P(yt) =

P H M
[ ]f(yt|Zt = P ) 0 0

0 f(yt|Zt = H) 0
0 0 I(yt = 0)

,

where f(yt|Zt = P ) = (1 − p)I(y
t=0)(pδ)I(y

t=1)0I(y
t=2)(p(1 − δ))I(y

t=3) and
f(yt|Zt = H) = (1− p)I(y

t=0)0I(y
t=1)(pδ)I(y

t=2)(p(1− δ))I(y
t=3).
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The important parameter here is δ, the probability of an individual being assigned
to a state. If the genetic or morphological assessment is not sufficient to assign parental
or hybrid status to an individual, then it will be classified as uncertain, with probability
1− δ.

As the hybridization test was carried out just once for each genotype, the
assignment probability δ is estimated for the first capture alone. The assignment of
parental or hybrid status to individuals in the uncertain category, and consequently
the calculation of the prevalence of hybrids, is carried out using global decoding by
means of the Viterbi algorithm.

The probability of survival for wolves φP is estimated at 0.63 (0.39–0.82), lower
than the probability of survival for hybrids φH , estimated at 0.81 (0.59–0.93). The
probability of detection p is estimated to be 0.46 (0.31–0.61) and the probability of
assignment δ is estimated to be 0.85 (0.75–0.91).

The main result in this case is an estimation of the number of hybrid individuals.
The estimated prevalence varies from 0.18 to 0.33, and is comparable to the observed
prevalence (Table 3.1).

Prevalence Occ. 1 Occ. 2 Occ. 3 Occ. 4 Occ. 5
Observed 0.27 0.33 0.20 0.46 0.27
Estimated 0.27 0.33 0.20 0.20 0.18

95% Confidence interval (0.09, 0.61) (0.10,0.61) (0.00, 0.50) (0.00, 0.50) (0.00, 0.50)

Table 3.1. Prevalence of hybrids: observed and estimated using the Viterbi algorithm

Santostasi et al. (2019) compare several models; the authors show that the
estimated prevalence is systematically lower than the observed prevalence, with
important consequences in terms of species management. The HMM permits a
confidence interval to be used in conjunction with the estimation of prevalence.

3.4. HMM and species distribution

3.4.1. General case

Instead of working at an individual scale, a different perspective can be gained by
using detection and non-detection data at species level. This data give us access to
spatial information in relation to species and populations, for example, occupancy. In
concrete terms, data are obtained by monitoring several spatial units (such as
breeding sites or photo traps) where a species may or may not be detected.
Occupancy models are used to estimate the proportion of an area occupied by a
species, with corrections for imperfect detectability (MacKenzie et al. 2018); in
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dynamic cases, the probabilities of local extinction ε and colonization κ are also
included. Sites are treated in exactly the same way as individuals using the
capture–recapture approach, and occupancy models are thus similar to the
capture–recapture models presented in the previous section. Occupancy models can
be seen as HMMs (Royle and Kéry 2007; Gimenez et al. 2014a) in which the state
process governs the dynamics of site states, with Zt = O denoting “occupied site”
and Zt = NO denoting “non-occupied site” for a year t. A species may be detected,
Y t,k = 1, or undetected, Y t,k = 0, at each site on multiple visits k over the course of
a year t. A schematic representation of the corresponding HMM is shown in
Figure 3.4.

Figure 3.4. Diagram of a dynamic occupancy model expressed as an HMM

The components used in constructing the likelihood of the model are written as
above. We begin with the initial distribution:

O NO
( )δ = ψ1 1− ψ1 ,

where ψ1 is the probability of initial occupancy (in the first year). The transition matrix
is written as:

Γ =

O NO[ ]
1− ε ε O
κ 1− κ NO

Finally, the state-dependent matrix of the observation distribution is:

P(yt) =

O NO








K∏

k=1

py
t,k

(1− p)1−yt,k

0

0
K∏

k=1

(1− yt,k)

,

where p is the probability of detection of the species.
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One special case is that of single-season (static) occupancy (MacKenzie et al.
2002) where ε = κ = 0 (Gimenez et al. 2014a) and T = 1. The HMM formulation
allows us to estimate not only the probabilities of occupancy, extinction and
colonization but also the state of a site if the species has not been detected (via global
decoding). Because of the flexibility of the HMM formulation, the standard model
can be extended to take account of differences in the probability of detecting a
species via finite number mixtures (Louvrier et al. 2018a) or a discrete measure of
this heterogeneity such as population density or reproductive state (Gimenez et al.
2014a; Veran et al. 2015); it can also take account of the occurrence of false positives
in the data due to erroneous species identification (Miller et al. 2011; Louvrier et al.
2019). As in the case of multi-state capture–recapture models, HMM occupancy
models can be extended to include multiple “occupied” states, such as reproductive
states (MacKenzie et al. 2009; Martin et al. 2009), epidemiological states
(McClintock et al. 2010) or landscape-related states (Lamy et al. 2013). These
models can also be extended to cases with multiple species in order to study
predator–prey relationships (Rota et al. 2016; Fidino et al. 2019).

3.4.2. Case study: estimating the distribution of a wolf population with
species identification errors and heterogeneous detection

In this case, an HMM will be used to model species distribution in a case
featuring identification errors and heterogeneous detection. The data analyzed relate
to the detection and non-detection of wolves in France, and were collected in 2013
(Louvrier et al. 2018b). Signs that the species was present, such as tracks, feces, prey
remains, dead animals, camera trap photographs and actual spottings were collected
by a network of professional and amateur observers (Duchamp et al. 2012). The data
for 2013 comprised 250 certain detections, 54 uncertain detections (cases of
confusion with another species) and 12,540 non-detections across a grid of 3,211
sites over a 10 x 10 km space. We have considered each month, from December to
March, as a separate sampling occasion. These months correspond to a period
between two dispersal events, in the fall and the spring (Louvrier et al. 2018b). This
choice increases the chance of respecting an important hypothesis inherent to
occupancy models, namely that the state of the site should stay the same over the
course of the study. In a previous study, we found that the main explanatory factor for
occupation was site altitude, and that the probability of detecting the species was
mostly determined by the sampling effort, defined as the number of observers per site
per year (Louvrier et al. 2018b). In this case, for illustrative purposes, we have
chosen to focus on a model that takes account of identification errors and
heterogeneous detection in the determination of detection probabilities (Louvrier
et al. 2018a). After estimating the parameters of the model, we constructed a map
representing the 3,211 sites in the study area, each associated with a heterogeneity
class estimated using the Viterbi algorithm.
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We considered two classes of sites, A and B, with respective proportions π and
1− π. The possible states were Zk = OA for an occupied site of class, A, Zk = OB
for an occupied site of class B, Zk = NOA for a non-occupied site of class A
and Zk = NOB for a non-occupied site of class B. We constructed a single-season
(static) model with k = 1, . . . ,K visits. Observations were denoted as yk = 0 for
a site where the species was not observed, yk = 1 for a site with an unambiguous
observation and yk = 2 for a site with an ambiguous observation. In this case, we
use a model in which all parameters are constant over time, but dependent on the site
classification in terms of detection.

The components used in writing the likelihood of the HMM are the initial
distribution as follows:

NOA NOB OA OB
( )δ = π(1− ψA) (1− π)(1− ψB) πψA (1− π)ψB

and the diagonal matrix giving the distribution of observations conditional on states:

P(yk) =

NOA NOB OA OB








f(yk|Zk = NOA) 0 0 0

0 f(yk|Zk = NOB) 0 0

0 0 f(yk|Zk = OA) 0

0 0 0 f(yk|Zk = OB)

,

where f(yk|Zk = NOA) = (1 − pA10)I(y
k=0)0I(y

k=1)pI(y
k=2)

A10 , f(yk|Zk =

NOB) = (1 − pB10)I(y
k=0)0I(y

k=1)pI(y
k=2)

B10 , f(yk|Zk = OA) =

(1 − pA11)I(y
k=0)(bpA11)I(y

k=1)(1 − b)pA11)I(y
k=2) and f(yk|Zk = OB) =

(1 − pB11)I(y
k=0)(bpB11)I(y

k=1)(1 − b)pB11)I(y
k=2) where pA11 is the probability

of correctly detecting the species at a class A occupied site (respectively, pB11 for
class B), pA10 is the probability of wrongly detecting the species at a class A
non-occupied site (respectively, pB10 for B), and b is the probability of classifying a
true positive as unambiguous or certain. As there is no dynamic element with respect
to site state, the transition matrix is the identity matrix.

The model presents several local maxima in the likelihood, something which is
common when using HMMs. It can be hard to pinpoint the reason for this problem; our
preferred approach is to apply multiple numerical optimizations, changing the initial
values each time. In this case, 100 random drawings were carried out from a uniform
distribution between 0 and 1 to provide initial values for the model parameters, which
are all probabilities; the model was then adjusted for each combination. The results
are striking, featuring multiple optima, as shown in Figure 3.5.

The estimated probability of occupation is low, at 0.05 (0.04–0.06). According to
the fitted model, 94% have a zero probability of detection of a false positive pB10,
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indicating that there are no identification errors for these sites. From the remaining
6% of sites, the estimated value of pA10 is also low at 0.05 (0.03–0.08). These results
suggest that the training procedure followed by observers in the network was effective,
and/or that the data filtering process applied prior to analysis minimizes the number
of false positives. The probability b of classifying a true positive as non-ambiguous
is high, estimated at 0.93 (0.90–0.95). Taken in conjunction with the low risk of false
positives, this result suggests that uncertain detections could be considered as certain.
Finally, the probability of detection of true positives p11 was estimated at 1 for 6% of
sites, and at 0.39 (0.35–0.43) for the remaining 94%.

Figure 3.5. Identification of local minima in the −2 log (L(θ)) deviance of an HMM.
Numerical optimization was carried out using 100 random drawings of initial values.
The graph shows number of instances (x axis) against value (y axis). Several local
minima are clearly visible

Once the parameters of the model have been estimated, the Viterbi algorithm may
be used to determine the most probable state for each site. Once the most probable
state of each site has been determined, the results may be viewed on a map, such as that
shown in Figure 3.6, showing the level of heterogeneity. Observed variations between

Copyright Iste 2022 / File for personal use of Valentin Lauret only



60 Statistical Models for Hidden Variables in Ecology

sites are partly the result of spatial variations in sampling effort, defined as the number
of active observers for a site (Louvrier et al. 2018a). The interest of using HMMs in
this case lies in the ability to take account of heterogeneity in the observation process.
This is done using a hidden variable to account for belonging to a finite number of
classes; it is thus possible to avoid the need to measure sampling effort on the ground,
a promising property for analyzing data obtained using participative approaches.

Figure 3.6. Visualization of heterogeneity: map of the heterogeneity class to
which each site in the study area is assigned using the Viterbi algorithm. For

a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

3.5. Discussion

In this chapter, we have seen how HMMs can be used in ecology to address
questions about the demography and distribution of species in their natural
environment. The flexibility and ecological relevance of the HMM modeling
framework have contributed to its increasing popularity in ecology, where it is used
in relation to a wide range of questions (McClintock et al. 2020). The main
advantage of the HMM approach lies in the ability to infer the ecological states of
individuals and species which are, at best, partially observable: these are hidden
variables. In addition to the ability to explicitly distinguish between observation
processes and states, it is possible to decompose potentially complex processes into
several simpler steps (Choquet 2008), facilitating model construction (Louvrier et al.
2018a; Santostasi et al. 2019). Finally, HMMs make it possible to infer state
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dynamics in time and space. Note that model selection and approaches to testing the
quality of adjustment of models to data are not covered here; for a detailed discussion
of these issues, see Zucchini et al. (2016) and McClintock et al. (2020).

Nevertheless, HMMs do have limitations, three of which will be discussed here.
The first limitation is numerical in nature. As we saw in our case study concerning
occupancy models, the likelihood function may present local maxima, which makes
global maximization complex. The solution to this problem generally involves testing
several sets of initial values for numerical optimization, via random drawings, as in the
case described above; another option is to use estimated parameters for a simplified
model less subject to local maxima as the initial values. Other approaches may also be
used (Brooks and Morgan 1994). A further problem is linked to the non-identifiability
of models for which the likelihood is uniform in areas, for example in the case of
redundant parameters; this problem can be diagnosed (Cole 2019).

The second limitation concerns the Markovian hypothesis itself. This hypothesis
implies that the time taken to move from one state to another follows a geometric
distribution, and this is not always verified in practice. One solution to this problem is
to consider Markov chains with an order greater than 1, or, in other words, to assign
memory to HMMs. In terms of demography, this consists, for example, of admitting
that the probability of movement between geographical sites depends not only on
the current site, but also on previously visited sites (Rouan et al. 2009a; Cole et al.
2014). Another solution is to model the time spent in a state directly, in the form of a
semi-Markov model (Choquet et al. 2011; King and Langrock 2016).

The third limitation is regarding the discrete nature of states in HMMs. In cases
where a finite number of states are used to approximate the distribution of a continuous
variable, such as the mass of an individual or the geographical range of a species, the
question of discretization must be addressed. Evidently, the number of states may be
increased to make the discretization finer, but at the cost of increased complexity,
via an increase in the number of parameters and/or states to estimate. The problems
relating to high-dimensional space states can be mitigated by exploiting the fact that
only certain transitions are possible, increasing calculation efficiency (Glennie et al.
2019); another option is to group states (Besbeas and Morgan 2019).

In this chapter, we have demonstrated the adjustment of HMMs in a frequentist
setting, combining an efficient expression of likelihood using the forward algorithm
with numerical optimization in order to obtain maximum likelihood estimators of
parameters, then using the Viterbi algorithm to reconstruct the most likely sequence
of states (hidden variables) in a process known as decoding. Our approach can be
implemented in R and is reproducible1. There are several computer-based solutions

1 The code is available to download from GitHub: https://oliviergimenez.github.io/code_livre_
variables_cachees/gimenez. html.
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for implementing a frequentist approach and for using HMMs to analyze
capture–recapture or occupancy data (Choquet et al. 2009; Fiske and Chandler 2011;
Laake 2013; Gimenez et al. 2014a). Other tools that may be used in this context
include the EM algorithm (see Chapter 5) or the Bayesian approach, implemented via
Markov chain Monte Carlo (MCMC) methods. The Bayesian approach is enjoying
increasing popularity for adjusting statistical models in the field of ecology, notably
due to the availability of flexible, powerful programs (de Valpine et al. 2017;
Plummer 2003). A major advantage of the Bayesian approach is that hidden variables
are treated as parameters to estimate, making it easy to take account of a measure of
uncertainty with regard to these variables. However, the drawback is that standard
MCMC samplers do not perform particularly well in cases where both parameters
and hidden variables must be determined. One solution is to apply sampling to the
parameters alone, marginalizing states via the forward algorithm (Turek et al. 2016;
Yackulic et al. 2020), but this has a negative effect on the estimation of hidden
variables. Research into the use of the Viterbi algorithm within a Bayesian
framework is currently ongoing (Lember et al. 2019).
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4.1. Introduction

Understanding where and when a species is present is crucial in ecology (Elith
and Leathwick 2009). The models used are generally based on correlations between
data representing the spatio-temporal dynamics of an organism and covariates
representing the biotic and abiotic environment in which it exists (Guisan and
Thuiller 2005). Outputs of such models are often interpreted as ecological processes
that explain the species distributions. However, these correlations do not necessarily
indicate a causality relationship (Hefley et al. 2017). To overcome this issue, specific
mechanisms can be considered explicitly in population dynamics models.

Within the context of hierarchical modeling, such mechanisms are integrated in
the modeling of latent variables that describe the dynamics of the studied population.
A variety of different deterministic and stochastic models have been developed. In
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this chapter, we focus on the use of deterministic models (for more details on the
subject of stochastic mechanistic models, see Soubeyrand et al. (2009) or Papaïx
et al. (2021)) based on differential or partial differential equations (PDEs), with a
special focus on reaction–diffusion models. These models have become increasingly
widespread in ecology over the past decades, notably thanks to the work of
Shigesada and Kawasaki (1997), Turchin (1998) and Murray (2002). They provide a
means of representing both growth and dispersal processes in heterogeneous
environments, while remaining parsimonious. The parsimonious nature of the models
makes them easy to simulate and estimate, a considerable advantage in the context of
hierarchical modeling. In the following sections, we present a rigorous means of
defining these models mathematically and show how they can be solved numerically.
Parameters inference rely on the definition of a probabilistic observation model
depending on the outputs of the mechanistic model. We present an approach to
establishing the link between latent variables and data, which are generally noisy,
partial and/or non-commensurable. A description of suitable estimation methods that
may be used in this context is also given. Finally, the use of this approach is
illustrated through three case studies.

4.2. Dynamic systems in ecology

4.2.1. Temporal models

Ordinary differential equations (ODEs) are used in population dynamics to
describe the evolution of the size of one or more populations of individuals over time.
In these models, time is the only variable. In each of the modeled populations, each
individual interacts with all other individuals.

One of the main strengths of these models lies in the ease of implementation and
numerical solution, even in cases with a large number of interacting populations.

Single-population models: The simplest ODE models are described by a single
equation of the form

{
N ′(t) = f(N(t)), t ∈ [0, T [,
N(0) = N0 ≥ 0,

[4.1]

where the unknown variable is the size of the population N(t) at each instant t > 0.
Quantity N0 corresponds to the initial size of the population. The function f ∈ C1(R)
is the growth function of the population. The instantaneous variation in population size
is given by

N ′(t) = nb births t−1 − nb deaths t−1 [4.2]
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Supposing that the numbers of births and deaths are proportional to the size of the
population, we obtain:

N ′(t) = bN(t)− dN(t) = (b− d)N(t) ,

where b > 0 and d > 0 correspond to birth and death rates, respectively, and where
r = b − d is the population growth rate. Taking N0 as the initial population (i.e. at
t = 0), we obtain:

N(t) = N0e
r t .

This is the simplest ODE model, corresponding to the Malthusian growth model. It
may be used, for example, to model the early stages of colonization when the number
of individuals is still low. However, it is generally unrealistic over longer periods when
r > 0: it fails to account for inter-individual competition for resources and predicts
exponential population growth.

Equation [4.2] can be modified to account for competition between individuals. In
this case, let us suppose that the death rate increases with population size: we replace
d by d(N) = d0 + d1 N, where d1 > 0. Thus, we obtain:

N ′(t) = bN − (d0 + d1N)N ,

i.e.

N ′(t) = (b− d0)N

[
1− d1

b− d0
N

]
,

Taking r = b− d0 > 0 and K =
b− d0
d1

, we obtain:

N ′(t) = rN

(
1− N

K

)
, t ≥ 0, [4.3]

which is the logistic equation in its classic form. Coefficient K is the carrying capacity
of the habitat (expressed as a number of individuals). The solution to model [4.3] can
be calculated analytically:

N(t) =
KN0ert

K +N0(ert − 1)
, for t ≥ 0. [4.4]
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Note that, irrespective of the initial value of N0, the population N(t) converges to
K over a sufficiently long period of time.

In a model N ′ = f(N), the function f(N)/N is known as the per capita growth
rate. This function corresponds to the mean growth rate per individual. In the logistic
case, we have f(N)/N = r(1 − N/K). Thus, the per capita growth rate increases
as the population size decreases. This approach may not be entirely realistic in certain
situations, for example, where there is a form of cooperation between individuals.
The term Allee effect, named in homage to Allee’s seminal work on inter-individual
cooperation (Allee 1931), is used to refer to cases where f(N)/N does not reach
its maximum value when N → 0. This frequently occurs in sexual populations, for
example, due to the difficulty of finding a partner in cases of low population density.
A negative f(N)/N for small values of N reflects a strong Allee effect, while in cases
where f(N)/N does not reach its maximum value at 0 but remains positive, we speak
of a weak Allee effect. The growth function

f(N) = rN

(
1− N

K

)(
N − ρ

)
[4.5]

is the archetypal growth function inducing an Allee effect, although other examples do
exist. In this case, if ρ > 0, the Allee effect is strong; if ρ ∈ (−K/2, 0], the Allee effect
is weak, and if ρ ≤ −K/2, there is no Allee effect. Contrary to what we observed in
equations [4.1] and [4.3] in the case of a logistic growth term, the behavior of N(t) in
this case is strongly dependent on N0: a population with an initial size strictly lower
than ρ will converge to 0. On the other hand, if the initial population size is strictly
greater than ρ, it will converge to K, as in the logistic case.

Stochastic models: in birth and death processes, the population N is incremented
by +1 for a birth event and −1 for a death event. With a birth rate bN and a death rate
dN , as the initial population N0 tends to infinity, the process N(t)/N0 will converge
in distribution toward the solution of X ′(t) = (b − d)X(t), with X(0) = 1, due
to the law of large numbers. The Malthus equation N ′(t) = r N(t) thus emerges as
the limit of a birth/death process. Now, let us suppose that the birth and death rates
are b = k + b1

N and d = k + d1
N , b1, d1 ≥ 0 and that k > 0. In this case, the law

of large numbers implies that the process N(t)/N0 converges in distribution toward
1. Over a longer period of time, however, we see that N(N0 t)/N0 converges toward
the solution of a stochastic differential equation (SDE) (Baake and Wakolbinger 2015;
Feller 1951):

dN(t) = r N(t)dt+
√
σ2N(t)dW (t), N(0) = N0 ≥ 0 [4.6]

with r = b1 − d1 and σ2 = 2 k the reproductive variance. The term W (t)
corresponds to a standard Brownian motion. This type of equation is particularly

Copyright Iste 2022 / File for personal use of Valentin Lauret only



Inferring Mechanistic Models in Spatial Ecology Using a Mechanistic-Statistical Approach 73

suitable for describing the dynamics of small populations, and can also be used to
describe extinction events, calculate probabilities of extinction, etc. More generally,
the deterministic growth term r N(t) may be replaced by the growth terms f(N)
described above to take account of inter-individual interactions.

Systems with multiple interacting populations: These models are also of the form

{
N ′(t) = F (N(t)), t ∈ [0, T [,
N(0) = N0.

[4.7]

In this case, the unknown N = (N1, . . . , Nk) is a vector in Rk (k ≥ 2) describing
the sizes of k populations, which may interact. The function F = (f1, . . . , fk) ∈
C1(Rk,Rk) describes the growth of each population, along with the interactions
between these populations. Different types of interactions between populations can
be described by acting on the form of the function F .

Predator–prey type models describe the interactions between a prey and a
predator population. The unknown values are the number of individuals N1(t) in the
prey population and the number of individuals N2(t) in the predator population. The
following model was initially described by Lotka and Volterra:

{
N ′

1 = r1 N1 − α12 N1 N2,
N ′

2 = −r2 N2 + α21 N1 N2
[4.8]

with r1, r2 > 0 and α12, α21 > 0. In this case, in the absence of predators, the prey
population exhibits Malthusian growth. In the absence of prey, the predator
population decreases exponentially. Interactions are described using the notion that
predation reduces the prey growth rate in proportion to the number of predators N2,
and that predation increases the predator growth rate in proportion to the number of
prey N1. This model, while simplistic, is theoretically valuable; it notably shows that
periodic dynamics can be obtained without necessarily including time-periodic
coefficients.

In Lotka–Volterra type competition models, the unknown values Ni(t), for
i = 1, . . . , k, correspond to competing populations. As in the case of predator–prey
models, each equation includes both an intraspecific interaction term and an
interspecific interaction term:

N ′
i = riNi



1−
k∑

j=1

αijNj



 [4.9]

Copyright Iste 2022 / File for personal use of Valentin Lauret only



74 Statistical Models for Hidden Variables in Ecology

with ri > 0 (intrinsic growth rate of the population i) and αij ≥ 0 (effect of
competition from population j on population i). The difference between competition
and predator–prey models thus lies in the sign of the interaction term −αij Ni Nj ,
which is always negative.

SIR models are a form of ODE model widely used in epidemiology. SIR models
are compartmental, dividing the population into multiple classes. The classic example
features the classes susceptible, infectious or removed resistant (immune, or deceased:
recovered, or removed). The simplest example of the SIR model is as follows:






S′(t) = − α

N
S(t) I(t),

I ′(t) =
α

N
S(t) I(t)− β I(t),

R′(t) = β I(t)

[4.10]

with N = S + I + R the size of the population (constant). In this case, susceptible
individuals (S) are infected at a rate α I proportional to the number of infected
individuals (I). Infected individuals become immune at a constant rate β (where 1/β
corresponds to the average period of contagion).

4.2.2. Spatio-temporal models without reproduction

In addition to time t, Spatio-temporal models feature a space variable x ∈ Rd. The
modeled quantity is no longer the size of the population N(t), but rather the density
of the population u(t,x) (number of individuals per unit of area in dimension 2).

Diffusion-transport equation: working within R2, given the initial position of an
individual, we wish to calculate the probability p(t, x1, x2) of finding this individual
at a position (x1, x2) ∈ R2 at time t > 0. Let us begin by supposing that movements
are discrete in time with a step τ . During a time step dt , 1, we consider that the
probability of an individual migrating is M dt. If it migrates, the probability of finding
it at a position (x1+y1, x2+y2) is given by a dispersal kernel J(y1, y2). We obtain the
following recursion relation: the probability that an individual is at a position (x1, x2)
at time t is equal to the probability that it was at (x1, x2) at time t and did not move,
plus all possible contributions from starting points (x1 − y1, x2 − y2) in R2:

p(t+ dt, x1, x2) = (1−M dt) p(t, x1, x2)

+M dt

∫

R2

J(y1, y2) p(t, x1 − y1, x2 − y2) dy1dy2,
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that is, with dt → 0,

∂p

∂t
(t, x1, x2) = M (J 2 p− p)(t, x1, x2), [4.11]

where ∂p/∂s denotes the partial derivative of the function p with respect to the
variable s and 2 is the standard convolution product in R2. Model [4.11] is an
integro-differential model, and is particularly suited to the study of long-distance
dispersion phenomena, using kernels J which decrease slowly when ‖x‖ → ∞.
However, it is difficult to simulate.

Now, let us suppose that the dispersal kernel corresponds to a multivariate normal
distribution N ((µ1, µ2),Λ), with mean (µ1, µ2) and diagonal covariance matrix
Λ = diag (λ,λ).

Applying a Taylor series development when λ, 1, we obtain:

∂p

∂t
(t, x1, x2) ≈ −v ·∇p+D∆p [4.12]

with

∇p :=

(
∂p

∂x1
,
∂p

∂x2

)
and ∆p =

∂2p

∂x2
1

+
∂2p

∂x2
2

.

The term ∆p is the Laplace operator. The coefficient D = M λ/2 is the diffusion
coefficient (expressed in (unit of space)2/(unit of time)), and the vector
v = (Mµ1,Mµ2) is the transport coefficient (unit of space)/(unit of time).

In equation [4.12], the quantity p(t, x1, x2) is interpreted as the probability
density corresponding to the random variable representing the position of the
individual at time t. Considering a population of size N0 made up of independent
individuals, distributed according to a density probability p0 at time t = 0, when
N0 → ∞, the distribution of individuals converges toward the solution u(t,x) of the
following equation:

{ ∂u

∂t
(t,x) = −v ·∇u+D∆u(t,x), t > 0, x ∈ R2,

u0(x) := u(0,x) = N0 p0(x)
[4.13]

This equation can be generalized, for example, to take account of spatial and
temporal heterogeneity:

∂u

∂t
(t,x) = −1 ·∇(M µ1u,M µ2u) +∆ (D(t, x1, x2)u) , t > 0, (x, y) ∈ R2[4.14]
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with 1 = (1, 1) and D(t, x1, x2) = M(t, x1, x2)λ(t, x1, x2)/2. Note that the
coefficients are included within the differential operators, instead of taking the form
of factors. Bounded domains: In practice, equation [4.13] is generally used within a
bounded subdomain Ω ⊂ Rd. In this case, the behavior of the solution on the
boundary ∂Ω of the domain must be described in order for the problem to be
correctly posed, as there are as many solutions as there are boundary conditions.

Two conditions are generally used in population dynamics. In the case of the
absorbing condition (Dirichlet), we take u(t,x) = 0 for all t > 0 and all x ∈ ∂Ω.
This implies that the environment outside of the region Ω is so hostile that any
organism moving outside of the boundary will die instantly. In the case of the
reflecting condition, the flow of organisms across the boundary is considered to be
null, either because the barrier is impenetrable and no individual can leave the
domain, or because equal numbers of individuals move in and out. To guarantee that
the total population size remains the same (conservativeness of the system), we
assume that

D(t,x)∇u · ν(t,x)− v(t,x) · ν(x)u(t,x) = 0, t > 0, x ∈ ∂Ω, [4.15]

where ν(x) is the outward normal vector to ∂Ω at point x. In the specific case where
there is no transport (v ≡ 0) and diffusion is homogeneous (D(t,x) ≡ D0), this
condition is known as the Neumann condition, and is written as

∂u

∂ν
(t,x) := ∇u(t,x) · ν(x) = 0 for all t > 0 and all x ∈ ∂Ω.

4.2.3. Spatio-temporal models with reproduction

Diffusion-transport equations conserve mass, whether in Rd or in a bounded
domain with a reflecting boundary condition. In other terms, the equation describes
the dynamics of the density of the population as a result of individual movement, but
the size of the population itself, N , remains constant. Inversely, in ODE models of
the form N ′(t) = f(N), the size of the population is not constant unless N(0) is a
zero of the function f . Reaction–diffusion models combine these two approaches,
describing both individual movement and population growth. They take the form:

∂u

∂t
(t,x) = −1 ·∇(v(t,x)u) +∆ (D(t,x)u) + f(t,x, u) [4.16]

and may be used in bounded domains (with the boundary conditions described above)
or in Rd. The growth (or reaction) terms f(t,x, u) take the same global form as those
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described above in the context of ODEs. Nevertheless, in this case they may depend on
a position in space, as the environment may be more or less favorable to reproduction.
Once again, equations may be combined to describe interactions between populations
(competition, predation, SIR, etc.).

4.2.4. Numerical solution

The reaction–diffusion model [4.16] is simulated by producing a numerical
approximation of the solution of the PDE. The first step is to choose a suitable
numerical method. These fall into two broad types: interpolation methods, where an
approximation is calculated over the whole space as a combination of base functions,
and methods which approximate the solution at discretization points. The numerical
method relies on a spatial discretization of the zone of study. The geometry of this
space may be more or less complex, ranging from a simple geometric form (square,
circle, etc.) to the outlines of a geographical or administrative entity (country, region,
etc.). Implementing a discretization algorithm over these zones is technically
complex. As this step also affects the final simulation, it is crucial to ensure that it is
precise enough to approximate the solution to the model. One method of verification
is to ensure that the granularity of the discretization does not result in a significant
change in the simulation. The choice of time-step algorithm and the resolution of
nonlinearities in the system are key elements in guaranteeing the functionality and
quality of the simulation. A detailed examination of these aspects of digital analysis
lies outside of the scope of this book; for more information, see Allaire (2012).
Moreover, diffusion or reaction terms, which are spatially and/or temporally
heterogeneous, must undergo pre-processing before they can be used in a simulator.
Finally, simulator output must often undergo post-processing to permit direct
comparison with observation data (aggregation across a sub-domain of the zone of
study, evaluation of the solution for specific places and at specific times, etc.). All of
these elements mean that specific numerical expertise is required in order to develop
a simulator. PDE simulation programs do exist, but these are not always easy to use
in the context of a mechanistic-statistical study due to the number of couplings that
would be required.

4.3. Estimation

4.3.1. Estimation principle

The models used to represent population dynamics generally contain unknowns,
which may take the form of parameters (e.g. capacity of the habitat, diffusion
parameter, and so on), functions (i.e. parameters of infinite dimension, e.g.
reproductive rate as a function of spatial position), or latent (hidden) processes or
variables (e.g. non-observed predator numbers in a situation featuring predator–prey
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dynamics). In this chapter, we have chosen to focus on the estimation of parameters
and the inference of latent processes; for cases requiring the estimation of functions,
readers may wish to consult the literature on semi-parametric and non-parametric
models (Ruppert et al. 2003). The latter book also offers an introduction to parameter
estimation (for theoretical foundations, see Dacunha-Castelle and Duflo 1994), and
an introduction to parameter estimation in a Bayesian context can be found in Albert
et al. (2015). Excellent works also exist on the subject of mixed and hierarchical
models (McCulloch and Searle 2001; Albert et al. 2015) in relation to latent variables
and processes.

4.3.2. Parameter estimation

Let θ be the unknown parameters in a model Mθ, and let these parameters belong
to a space Θ, which is not reduced to a singleton. To estimate the parameters of the
model using data, we must evaluate the θ0 ∈ Θ under which the existing data were
obtained, given that the model that generated these data is contained within the
model class {Mθ : θ ∈ Θ}. In many real-world situations, this approach consists of
estimating θ in the context of a regression (often nonlinear), for example of the form:

y = Mθ(x) + ε [4.17]

where y is the response variable, x is an explanatory variable, Mθ is a deterministic
function of x and ε is a noise. Once model [4.17] has been specified, the aim is to
infer θ using data which, in the simplest case, consist of repeated and independent
observations of (x, y), that is, a sample {(xi, yi) : i = 1, . . . , I}.

The ordinary least squares estimator: the most “intuitive” approach is to determine
the value of θ by minimizing, the sum of squared deviations between the observations
yi and their predicted values ŷi = Mθ(xi):

θ̂ = argminθ∈Θ

I∑

i=1

{yi −Mθ(xi)}2

In the general case, this minimization must be carried out using an iterative
numerical algorithm (Gauss–Newton, Nelder–Mead, simulated annealing, etc.), but
exact expressions are available in some cases. Concerning the uncertainty of θ̂, if the
noise ε is zero, the inference is exact (Mθ̂ is an interpolator). If this is not the case,
then the structure of the noise and the random element associated with the drawn
sample must be taken into account. In simple cases, estimation by least squares offers
a means of describing the law, or at least the variance, of θ̂ in an exact or asymptotic
manner (i.e. when I tends toward infinity). The two methods presented below, which
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are two of the major paradigms of modern statistics, offer a more generic, elegant
approach.

Maximum likelihood estimation (MLE): in the case of regression, a distributional
hypothesis is required for noise. For example, in Yi = Mθ(xi) + εi, the εi are
independent and identically distributed following the Normal law (0,σ2) where
σ ≥ 0, and Yi is the random variable taking the value yi through sampling. Using
such a hypothesis, we must write the joint law of Yis given xis, which is dependent
on the parameter θ. We must then maximize this function (the likelihood) with
respect to θ.

In the case of a Gaussian noise, the conditional law of the random variable Y is
thus:

Y | X = x ∼ Normal(Mθ(x),σ
2). [4.18]

The probability density of Y given X = x is thus:

y 2→ fY |X(y|x; θ,σ) = 1

σ
√
2π

exp

(
− (y −Mθ(x))2

2σ2

)
.

Given the hypothesis that εi are independent, the likelihood is written as follows:

L(θ; (yi, xi) : i = 1, . . . , I,σ) =
I∏

i=1

fY |X(yi|xi; θ,σ). [4.19]

The maximum likelihood estimator is

θ̂ = argmaxθ∈ΘL(θ; (yi, xi) : i = 1, . . . , I,σ).

In certain cases, there is an analytical expression of θ̂. Otherwise, a maximization
algorithm, such as those mentioned earlier, is used. For numerical reasons, it is the
log-likelihood that is generally maximized. If, in these specific cases, the uncertainty
of θ̂ can be characterized specifically, in the general case and in accordance with
regularity hypotheses, we obtain a result of asymptotic normality:

√
I(θ̂ − θ) →d Normal(0, I−1

θ ),

where Iθ is the Fisher information matrix.
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Bayesian estimation: in this context, parameter θ is considered as a random
variable for which prior knowledge (expertise) is available, modeled by a probability
density θ 2→ π(θ) defined on Θ. The posterior distribution of θ combines prior
information with the information drawn from data. In the continuous case, it is
expressed in the form

f(θ | data) =
f(data | θ)π(θ)

f(data)
,

where f(data | θ) is the likelihood of the model and f(data) =
∫
Θ f(data | θ)π(θ)dθ.

For example, in the case of model [4.18] above, f(data | θ) =
∏I

i=1 fY |X(yi|xi; θ,σ).
The posterior evaluation of the distribution provides us with pointwise estimations of
θ (posterior mode, mean or median), and also allows us to evaluate the variability of
θ, taking account of prior knowledge and of the information obtained from data.

For specific expressions of likelihood and prior distribution, the posterior
distribution corresponds to a usual distribution. In more complex cases, an algorithm
may be used to sample the posterior distribution, and the drawn sample (ideally
large) is used to evaluate the characteristics of the posterior distribution (mode, mean,
median, quantiles, etc.) numerically. The most commonly used algorithms in these
cases are those based on importance sampling, MCMCs with a Gibbs or
Metropolis–Hastings sampler, and their derivatives or extensions.

Other estimation methods may be used to work around potential problems
encountered when using the approaches described above. Notable examples include
the method of moments (MM), or approximate Bayesian computation (ABC), which
used summarized statistics in the place of raw data; another approach involves
estimating pseudo-likelihood or quasi-likelihood, whereby dependency relations
between data elements or distributional hypotheses may be ignored.

4.3.3. Estimation of latent processes

Latent processes are integrated into models with a hierarchical structure
(state–space models). Typically, taking equation [4.17], the response variable y is
modeled conditional to a process Z:

y = Mθ(x,Z) + ε, [4.20]

where Z is generated by a stochastic model parameterized by θ. More generically, ε
may even be dependent on θ, x and Z. In the general case, the chosen model structure
has limited dependency relations between variables and parameters. For example, in
many cases, Mθ is only parameterized by a subset of θ, say θ1, and Z is modeled as
a function of the remaining components of θ, say θ2; y does not depend on the whole
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process Z, but on only one component, corresponding to elements in x. Typically, if
x contains spatial coordinates s, a time t and environmental covariates, and if Z is
a process indexed by space and time (with Z(s, t) denoting the value of Z at (s, t)),
then [4.20] becomes

y = Mθ1(x, Z(s, t)) + ε.

We shall now consider a real-world example, which will be used in a slightly
different form in section 4.4.2. Take yi an observed number of individuals at a site
with coordinates si ∈ Ω ⊂ R2 and at a time ti ∈ R. The corresponding random
variable, noted Yi, obeys the following conditional Poisson distribution:

Yi | Z(si, ti) ∼ Poisson(λθ1(x) exp{Z(si, ti)}), [4.21]

where λ is a positive deterministic function parameterized by θ1 and dependent on
space, time, and any environmental covariates. Given the values of Z(si, ti),
i = 1, . . . , I , the values of Yi are independent. Z is a Gaussian spatio-temporal field
parameterized by θ2, that is, for any finite set of points in the space-time domain, the
vector of the values taken by Z at these points is Gaussian with a mean and
variance–covariance matrix parameterized by θ2. For any strictly positive integer n
and any n points in the space-time domain,

{Z(s, t); (s, t) ∈ (Ω× R)n} ∼ Normal(µθ2 ,Σθ2), [4.22]

where the values of µθ2 and Σθ2 depend on the points (s, t) under consideration. In
a model of this type, the values of Z(si, ti) are dependent but the values of Yi given
Z(si, ti) are conditionally independent. This simplifies the computation of likelihood,
and, consequently, inference.

The likelihood of the model must be written in both maximum likelihood and
Bayesian estimation approaches. In the general case, this takes the following form:

L(θ; (yi, xi) : i = 1, . . . , I) =

∫
f(Y | x,Z; θ)dνθ(Z),

where Y is the set of Yi, x is the set of xi, f(Y | x,Z; θ) is the joint conditional
probability measure of Yi, νθ is the probability measure of Z and integration is
carried out with respect to Z. Taking Yi to be conditionally independent given Z,
then f(Y | x,Z; θ) can be written as a product of I terms, in the same way as the
product of equation [4.19] (e.g.

∏I
i=1 f(Yi | xi, Z(si, ti); θ)). However, if Z is

actually a process incorporating the dependency characteristics of a phenomenon
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(and not simply a collection of independent variables), then the likelihood of
the model remains a multiple integral (typically of size I), which is difficult to
calculate. Different algorithms may be used in this case, such as EM
(expectation–maximization), MCEM (Monte Carlo expectation–maximization),
MCMC or importance sampling algorithms. In these algorithms, the state of Z (or at
least of the components of Z used in writing the likelihood: e.g. the Z(si, ti) in the
case of the model using equations [4.21]–[4.22]) is updated, alongside parameter
values, with each iteration.

4.3.4. Mechanistic-statistical models

Here, the aim is to construct a model that connects a mechanistic representation
of the underlying processes with data derived from these processes. To do this, we
combine a sub-model of the observation process – a data model – with a mechanistic
sub-model of the phenomenon in question – a process model.

In the case of a mechanistic-statistical model without latent processes (equation
[4.17]), the mechanistic sub-model is Mθ(x) and corresponds, for example, to an
ODE or a PDE. The observation process corresponds to the noise ε.

In the case of a mechanistic-statistical model with latent processes (equation
[4.20]), the mechanistic sub-model may correspond to Mθ(x,Z), Z or both.
Evidently, situations arise where Mθ(x,Z) and Z(x) coincide (in this case, Z is
indexed by x or some of the components of x). If Mθ(x,Z) forms part of the
mechanistic sub-model, the observation process corresponds to ε. If the mechanistic
sub-model is represented by Z alone, then the observation process corresponds to
Mθ(x,Z) + ε. As we have seen, the mechanistic sub-model may take the form
Mθ(x,Z), and in this case, the term Z may be interpreted as a (random) function
that conditions the mechanistic model. Thus, Z may be used to represent a
non-observed environmental model that conditions the dynamics of a population.
Consider the following example: Mθ(x,Z) is the solution of a PDE giving the
density of a population of interest, of which one parameter (in this case, Z) varies
over time and space and corresponds to a Gaussian process representing an
environmental variable, or to a stochastic dynamic process giving the density of a
predatory population. In other cases, Z may be a birth-death process, or, more
generally, an SDE giving the size of a population, and Mθ(x,Z) reflects the
specificities of a relatively complex observation process (e.g. the observation may
relate to cumulative damage over space and time caused by the presence of a given
population).

The parameter estimation and latent process reconstruction approaches presented
in sections 4.3.2 and 4.3.3 may be applied in all of these cases. The examples given
below concern real situations, showing how the relatively generic frameworks
described here can be adapted to the specific characteristics of real case studies.
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4.4. Examples

4.4.1. The COVID-19 epidemic in France

Context: the COVID-19 epidemic was first detected in December 2019 in the
Hubei province of China. The disease then propagated around the world, prompting
the WHO to declare a pandemic on March 11, 2020. The first cases were officially
detected in France on January 24. The infection fatality ratio (IFR), defined as the
number of deaths over the number of infected individuals, is an important quantity in
calculating the expected number of victims by the end of the epidemic, once a certain
proportion of the population has been infected. While the data concerning the number
of deaths due to COVID-19 are likely to be precise, the real number of infected
individuals in the population is unknown, largely due to the relatively low testing rate
in France in the early stages of the epidemic. The IFR cannot, therefore, be
calculated directly. Using the first set of data available for France (up to March 17),
we aim to (1) calculate the IFR for France, (2) estimate the number of individuals
infected with COVID-19 in France, and (3) calculate the basic reproduction rate R0.
This example is taken from a study carried out by Roques et al. (2020b).

Data: the data used here are for COVID-19 testing in France from January 22,
2020 up to March 17, 2020. These data give the number of positive cases and deaths
per day (Dong et al. 2020), along with the number of tests carried out during this
period. Official data on COVID-19 deaths in France only cover deaths in hospitals.
Data from the Grand Est region indicate an additional 570 deaths in nursing homes
(EHPAD), and these data must be added to the official total (1,015 deaths as of March
31).

Mechanistic model: we shall use the SIR model described by the equation
system [4.10], beginning at an estimated time t = t0 that should correspond,
approximately, to the data of introduction (t0 may be considered as an equivalent
introduction date in a dynamic situation in which a single introduction determines the
beginning of the epidemic). The initial value S(t0) = 67 · 106 represents the total
population of France; I(t0) = 1 and R(t0) = 0. Parameter β is fixed using
information concerning the period of contagion (β = 1/10, corresponding to a
duration of 10 days). Parameter α will be estimated. Let D(t) be the number of
deaths due to the epidemic. The impact of compartment D(t) on the dynamics of the
SIR system and on the total population will be ignored. The dynamics of D(t) are
dependent on I(t) via the differential equation:

D′(t) = γ(t) I(t), [4.23]

where γ(t) is the death rate among infected individuals.
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Model [4.10] can be solved analytically by changing the time variable, requiring
numerical integration. In practice, this method is not efficient, and a standard
numerical solution using the Matlab solver ode45 is preferable.

Observation model: the number of positive test cases on day t, denoted as Ît, is
presumed to follow a binomial distribution conditional on the number of tests nt on
day t and on the probability pt of a positive test within this sample:

Ît ∼ Binomial(nt, pt). [4.24]

The tested population comprises a proportion of infected individuals and a
proportion of susceptible individuals: nt = τ1(t) I(t) + τ2(t)S(t). Thus,

pt =
σ τ1(t) I(t)

τ1(t) I(t) + τ2(t)S(t)
=

σ I(t)

I(t) + κt S(t)

with κt := τ2(t)/τ1(t): the ratio between the probability of being tested conditional
on the fact of being of type S and the probability of being tested conditional on the
fact of being of type I . The ratio κ will be considered independent of t for the period
in question (start of the epidemic). The coefficient σ corresponds to the sensitivity of
the test. In most cases, RT-PCR tests were used, and existing data indicate a sensitivity
of around 70% (σ = 0.7).

Inference: the parameters to estimate are α, κ and t0. Taking the increments Î(t)
to be independent conditional on the process, and for a given nt, the likelihood of the
parameters is:

L(α, t0,κ) := P ({Ît}|α, t0,κ) =
tf∏

t=ti

nt!

(Ît)!(nt − Ît)!
pÎtt (1− pt)

nt−Ît

with ti the date of the initial observation and tf the date of the final observation. In
this expression, L(α, t0,κ) is dependent on α, t0,κ via pt. The posterior distribution
of (α, t0,κ) is calculated using a Bayesian method, using prior uniform distributions
α ∈ (0, 1), t0 ∈ (1, 50), (January 1–February 19) and κ ∈ (0, 1). This is done using a
Metropolis-Hastings (MCMC) algorithm with four independent chains, each made up
of 106 iterations.
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Results: the number of observations, in this case the cumulative number of positive
cases Σt := Σi=1,...,tÎi, is compared with the expectation of the observation model
associated with the posterior mode: nt p∗t (expectation of a binomial distribution),
with

p∗t =
σ I∗(t)

I∗(t) + κ∗ S∗(t)

and where I∗(t), S∗(t) are the solutions of the system [4.10] associated with the
posterior mode. The results in Figure 4.1 show that these results are well fitted to the
data.

Figure 4.1. Expectation of the total number of cases associated with the posterior
mode versus number of cases actually detected (cumulative). The curve shows the
expectation nt p

∗
t obtained from the observation model, while the crosses correspond

to the data (cumulative values of Σt). For a color version of this figure, see
www.iste.co.uk/peyrard/ecology.zip

The joint posterior distributions of the three pairs of parameters (α,κ), (t0,α) and
(t0,κ) are shown in Figure 4.2. Note that these distributions are very different from
the prior uniform distribution (indicating that the data are sufficiently informative)
and that the support is sufficiently far from the boundaries of the a priori intervals
(indicating that the intervals used in defining the prior distribution were sufficiently
large). By simulating [4.10] using the prior parameter distributions, we can calculate
the distribution of the latent variables I and R. This gives us a factor of 8 between
observed and real cases.

In the case of model [4.10], R0 can be calculated easily using the formula R0 =
α/β (Murray 2002). Using the marginal prior distribution of α, we obtain R0 = 3.2
(95% CI: 3.1–3.3). Note that R0 corresponds to the average number of people infected
by an individual of type I in an entirely susceptible population. The epidemic will
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only propagate if R0 > 1. Using relation [4.23], the estimated distribution of I(t)
and the mortality data D(t), the distribution of the parameter γ(t) for each date can
be calculated. The IFR corresponds to the proportion of infected individuals who die
from the disease, that is, IFRt := γ(t)/(γ(t) + β). This gives us an IFR of 0.5%
(95% CI: 0.3–0.8) for March 17, excluding the nursing home data. Using local data for
the Grand Est region, we see that this IFR should be multiplied by a factor of around
(1015 + 570)/1015 ≈ 1.6, giving an adjusted IFR of 0.8% (95% CI: 0.45–1.25) for
the French population as a whole, including nursing home residents.

Figure 4.2. Joint posterior distributions of couples (α,κ), (t0,α) and (t0,κ).
For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

4.4.2. Wolf (Canis lupus) colonization in southeastern France

Context: most species distribution models are based on a regressive approach using
presence indicators and as a function of environmental covariates, and thus implicitly
suppose that all favorable zones are colonized. However, this hypothesis can result in
a bias in predictions concerning the future presence of a species, notably in the case
of species with strong colonization dynamics. In this section, the use of mechanistic
models will be illustrated using the case of the recolonization of southeastern France
by gray wolves (Canis lupus) between 2007 and 2015. This example is taken from a
study carried out by Louvrier et al. (2020).

Data: detection and non-detection data were collected by a network of
professional and non-professional observers, looking for signs that wolves were
present (Duchamp et al. 2012). Signs were then filtered in order to avoid false
positives. Detections mostly occurred in winter, from December to March. We shall
divide the data into four detection events (December, January, February and March),
and the population will be considered to be closed during this period. Our study is
limited to southeastern France and to the period 2007–2015 (Figure 4.3). The
presence–absence of wolves is defined using a network of regular 10 x 10 km cells
covering the zone of study.
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Figure 4.3. Map of wolf detections in southeastern France (black dots) and the
abundance predicted by the model (graduated colors) for each 100 km2 site.

For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

Mechanistic model: Let Ni,t be the random latent variable giving the abundance
of wolves at a site i in year t, such that:

{
Ni,t ∼ Poisson

(
λ(i, t)εi,t

)
,

log(εi,t) ∼ N(0,σ)
[4.25]

Variable λ(i, t) gives the theoretical abundance at site i in year t, while εi,t is
used to consider overdispersion around this value. The theoretical abundance is
calculated using the solution to a reaction–diffusion equation describing the
spatiotemporal dynamics of wolf colonization:






λ(i, t) =

∫

Bi

ν(t, x)dx,

∂ν(t, x)

∂t
= ∆

(
d(x)ν(t, x)

)
+ f(x, ν(t, x)),

[4.26]

with

f(x, ν(t, x)) =

{
r(x)ν(t, x)(1− ν(t,x)

K ) when r(x) > 0,

r(x)ν(t, x) when r(x) ≤ 0.
[4.27]

In this case, we consider that the diffusion coefficient and the intrinsic growth rate
depend on the spatial position x. More precisely, these parameters depend,
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respectively, on human population density and forest cover via a linear and quadratic
effect. In order to respect the constraints on these parameters, a log link function is
used for the diffusion coefficient, with a logistic function constrained between 0 and
2 for the growth rate. In order to calculate ν(t, x), equation [4.26] must be calculated.
This is done using the method of lines (Schiesser 1991; Chow 2003) , which consists
of approximating the PDE via a system of ODEs, discretizing the space as a regular
grid in order to apply classic algorithms. Equation [4.26] can then be approximated
using the following ODE system:






λ(i, t) =
∑

k

∑

l

A
(
Bi ∩ cs(k,l)

)
u
(
sk,l, t

)
,

U̇t = R× Ut

(

R<0 +
(
1− R<0

)(
1− Ut

K

))
+MUt,

[4.28]

where R<0 is the vector indicating negative elements of R and A
(
Bi ∩ cs(k,l)

)
is

the surface where cell s(k, l) in the grid and the domain Bi in which the observation
took place intersect. × denotes the term by term product. UT

t = [u(1, t), ..., u(Cs, t)],
where Cs is the total number of cells, is the vector of densities in each cell in the grid,
and RT = [r̄(1), ..., r̄(Cs)] is the vector of mean growth rates for each cell. M is the
propagation matrix approximating the diffusion operator.

Observation model: let yijt be the random variable, with a value of 1 if at least
one individual was detected at site i = 1, ...,K during capture event j = 1, ..., J in
year t = 1, ..., T , and 0 otherwise. We obtain

J∑

j=1

yijt ∼ Binomial
(
J, pit

)
.

The probability pit that at least one individual will be detected during a capture
event depends on the individual probability of detection qit and on the abundance Ni,t

of wolves at site i in year t via the relationship

pit = 1−
(
1− qit

)Nit

,

in which abundance is obtained using the mechanistic model. Variations in the
individual probability of detection are taken into account via a log-linear relation
between q, the sampling effort Eff and road density rD:

logit
(
qit
)
= β0 + β1Effit + β2rDi.
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Figure 4.4. Estimated response curves. Estimated relations between individual
detectability and sampling effort (top left) or road density (top right), between growth
rate and forest coverage (bottom left), and between the diffusion coefficient and
human population density (bottom right). For a color version of this figure, see
www.iste.co.uk/peyrard/ecology.zip

Inference: inference was carried out in a Bayesian framework using the mecastat
module (Rey et al. 2018) in JAGS. Gaussian prior distributions with a mean of 0 and
variance of 1 were defined for all parameters, except for K, for which a logistical link
function was used, limited to an interval between 0 and 0.2. The mechanistic model
defined in system [4.28] was solved using the deSolve package (Soetaert et al. 2010)
in R.

Results: overall, the abundances predicted by the model are a good reflection of
the spatiotemporal trends observed in the detection data (Figure 4.3). The probability
of detection increases with sampling effort, and decreases as road density increases
(Figure 4.4). Furthermore, the growth rate is seen to increase with forest coverage.
This effect is certainly due to a greater abundance of prey. Finally, human population
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density increases the diffusion coefficient, reducing the abundance of wolves in highly
populated zones.

The model was fitted using data from 2007 to 2015, and was used to predict wolf
presence in 2016. Figure 4.5 shows a comparison of predicted and observed presence
for this year. Wolves were detected at many of the sites where the predicted probability
of occupation was high. Out of 137 sites at which wolves were detected in 2016, only
10, all in the southwestern part of the study zone, had a low predicted probability of
occupation. On the other hand, the model predicted that wolves would be present at a
higher number of sites where occupation was not detected in 2016. This may be due to
non-detection of actual presence, but may also be explained by the diffusive aspect of
dispersion, whereby the establishment of packs on the edges of the colonization area
will not be detected immediately.

Figure 4.5. Predicted occupation probability map for 2016, obtained using the model
fitted to data from 2007 to 2015. The blue squares represent sites were wolves were
actually detected in 2016. The black dots represent the uncertainty of the prediction.
For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

4.4.3. Estimating dates and locations of the introduction of invasive
strains of watermelon mosaic virus

Context: determining the place and time of introduction of exogenous species is a
key issue in invasion biology; this information is key to understanding the biotic and
abiotic conditions which promote the introduction and establishment of invasive
species. However, in many cases, biological invasions go undetected until several
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years after the initial introduction. For this reason, the development of methods for
estimating the date and location at which a species first appeared is key. Any model
used for this purpose must take account of lifecycle parameters, as the estimation of
these parameters also depends on the distance and duration separating the actual
introduction and observation. In this example, a reaction–diffusion model will be
used to describe the invasion dynamics of multiple species or genotypes in
competition with an established resident population. This example is taken from a
study carried out by Roques et al. (2020a).

Data: the data in this case consist of a set of observations describing the invasion of
a landscape, initially occupied by a resident strain of watermelon mosaic virus (WMV,
Potyvirus genus), which is particularly widespread in cucurbit crops, by four invasive
variants. The area of study is located in southeastern France. The presence of WMV
in plants was monitored from 2004 to 2008, with over 200 specimens collected and
analyzed each year. Each observation for a given date and given location corresponds
to the number of plants infected with each viral strain. The quality of the habitat in
the area of study was approximated based on the proportion of plants susceptible to
WMV in each cell in a raster, with a resolution of 1.4× 1.4 km2. This proportion was
normalized to give the density of host plants in each cell x, z(x), such that z(x) = 0
if no host plants were present in cell x and z(x) = 1 if the proportion of host plants
was maximal (Figure 4.6).

Figure 4.6. Proportion of plants susceptible to WMV across the area of study.
For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

Mechanistic model: let Cn(t, x) and En
k (t, x) be the densities of the resident

(classic) strain and invasive (or mutant) variants k, respectively, at position x, time t
and in year n. The intra-annual dynamics describe the dispersion and growth in the
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populations of the five competing viral strains over the course of the epidemic
season, using the following model of neutral competition with diffusion:






∂tCn(t, x) = D∆Cn + rCn
(
z(x)− Cn −

4∑
i=1

En
i (t, x)

)
,

∂tEn
k (t, x) = D∆En

k + rEn
k

(
z(x)− Cn −

4∑
i=1

En
i (t, x)

)
,

for t ∈ [0, tf ] and for all invasive variants present during the year in question, that
is for invasive variants Ek such that n ≥ nk where nk is the year of introduction of
variant k. The boundary conditions are reflecting. To limit the number of parameters,
and based on present knowledge of the virus, the diffusion, competition and growth
coefficients for each variant are identical at this stage in the process. The inter-annual
dynamics describe the mortality of different variants over winter, when there are no
susceptible plants in the landscape and when the virus is forced to survive in the wild.
Population densities at time t = 0 in year n are linked to those in year n − 1 at time
tf in the following manner:

{
Cn(0, x) = (1−mC)Cn−1(tf , x),
En

k (0, x) = (1−mE)En−1(tf , x),

where mC and mE are the winter mortalities of the resident and mutant variants,
respectively.

Observation model: the data correspond to the number of samples infected by the
classic strain, Cobs

i , and by the different invasive variants, Eobs
k,i , at a given date and

time, (ti, xi). The vector
(
Cobs

i , Eobs
1,i , Eobs

2,i , Eobs
3,i , Eobs

4,i

)
follows a multinomial

distribution M
(
Vi,pi

)
where Vi = Cobs

i +
∑

k E
obs
k,i is the total number of samples

infected by the virus. pi =
(
pCi , p

E1
i , pE2

i , pE3
i , pE4

i

)
is the vector of the respective

populations of each variant in the viral population at time ti and in location xi. These
proportions are given by the mechanistic model as follows:

pCi =
Cn(ti, xi)

Cn(ti, xi) +
∑

k E
n
k (ti, xi)

, pEk
i =

En
k (ti, xi)

Cn(ti, xi) +
∑

k E
n
k (ti, xi)

Inference: due to the long calculation time and the possibility of obtaining multiple
local optimums, parameters were inferred using maximum likelihood by means of a
simulated annealing algorithm. This is an acceptance/rejection type algorithm that
constructs a sequence of parameters, converging in probability toward the maximum
likelihood estimator.
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Biological parameter D r mc me

Value 0.44 km2day−1 0.31 day−1 0.5 year−1 0 year−1

Date of introduction E1 E2 E3 E4

Value 1990 1990 1990 1995
Place of introduction E1 E2 E3 E4

Value (Lambert 93, km) (926, 6369) (926, 6369) (758, 6369) (758, 6294)

Table 4.1. Parameters estimated by maximum likelihood

Results: the estimated parameters are shown in Table 4.1. Three of the invasive
variants appear to have been introduced in the same year, while invasive variant 4
appeared 5 years later. The relatively distant introduction sites explain the spatial
partitioning of variants (Figure 4.7). In terms of biological parameters, the high
winter mortality rate of the classic strain compared to the invasive variants shows that
the latter have a strong competitive advantage. The estimated diffusion coefficient
indicates that the virus moves 1.3 km/day on average. The estimated growth rate
corresponds to an increase by a factor of 1.3 each day, in the absence of competition.

Figure 4.7. Proportions of classic and invasive variants in a landscape: data and
simulations. The classic strain is shown in red, while invasive variants are shown in light
blue (E1), dark blue (E2), green (E3) and purple (E4). The proportions of each variant
in the data are shown as pie charts. The white crosses indicate estimated sites of
introduction. Colored zones show the spatio-temporal dynamics of the dominant strain,
as simulated using parameters corresponding to the maximum likelihood estimator. For
a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip
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5.1. Introduction

The continued presence of a species in a landscape is the result of a balance
between population extinction and recolonization (Levins et al. 1969). Local
populations have limited lifespans due to changing environmental conditions, which
make the habitat more or less favorable to a given population. Living organisms have
adopted a range of ecological strategies to deal with changes in their environment,
including the capacity to disperse their propagules. Furthermore, some organisms –
notably plants – have also developed propagule dormancy strategies, delaying
germination until favorable environmental conditions appear. In higher plants, seeds
are used for both spatial dispersal and long-term survival via the creation of a bank of
dormant seeds in the soil; these seeds may then germinate after several years, or even
decades, of dormancy (Lewis 1973). Dormant seed banks are particularly common
among annual plants (Vegis 1964) existing in a “disturbed” environment (deserts,
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agroecosystems, ruderal environments, etc.). In a context of environmental
disturbance, the dynamics of annual plants at regional level are determined by their
soil dormancy and spatial dispersal capacities. Furthermore, these traits condition the
coexistence of species at community level (Leibold and Miller 2004). Nevertheless, it
remains difficult to distinguish between the contributions of dormancy and spatial
dispersal in the natural dynamics of plants. Simply observing a plant population
within a field sample (at flowering stage, for example) does not tell us whether these
plants were established by dispersal from a neighboring population, or germinated
from a local dormant seed bank. The observation of adult plants alone may result in
false conclusions concerning local extinctions or colonizations (Freckleton and
Watkinson 2002; Freville et al. 2013).

The dynamics of plants exhibiting dormancy behaviors is typically a form of
metapopulation dynamic (Levins et al. 1969), with local dynamic in each patch (e.g.
a field) combined with dispersal between patches. From a modeling perspective,
however, this is a metapopulation with hidden stage, since the state of the seed bank
is usually unknown (the cost of acquisition is too high). In recent years, models of
plant dynamics including dormancy have been developed using hidden Markov
models (HMM), with the aim of producing a statistical estimation of key parameters
in these dynamics. Examples include Lamy et al. (2013), Freville et al. (2013) and
Manna et al. (2017), although the last two studies ignore the effect of seed setting by
standing flora on the local seed bank. Other models include this effect, but do not
include explicit spatial colonization, using a simpler propagule rain approach (Borgy
et al. 2015; Pluntz et al. 2018). Furthermore, the observed and hidden variables in
some of these models are considered to be of the presence–absence type, meaning
that abundance or abundance class information, which is often present in the data, is
lost. Nevertheless, these approaches clearly show the relevance of HMM techniques
for modeling the dynamics of populations with a dormant stage, and for extracting
information on plant dynamics based on visible flora. The model presented in
Freville et al. (2013), for example, indicates whether or not a specific dynamic
features a dormant stage. Pluntz et al. (2018) used an HMM to automatically
construct homogeneous functional groups, consistent with current ecological
knowledge, from available occurrence data.

In this chapter, we will present an HMM of local dynamics (within a patch) and
regional dynamics (between patches) for an annual plant with a dormant stage,
combining all of the advantages of existing models. Abundance class data will be
taken into account, as will the effect of adult plants on the seed bank, alongside
explicit spatial dispersal. This model may be seen as several HMM linked by the
observations, hence the chosen name: multidimensional HMM with data feedback
(MHMM-DF).
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Weeds are plants that grow in cultivated land without having been planted there
intentionally. Understanding the dormancy and colonization behaviors of these plants
makes them easier to manage, and as such, it is of key importance in agronomy. If
dormancy is the dominant factor in the dynamics of a species, local weed management
approaches will focus on preventing seeds from entering the dormant state after falling
(Gallandt 2006) or, on the contrary, on limiting the emergence of dormant seeds near
cultivated crops in order to prevent simultaneous germination (Cordeau et al. 2017a,b).
In cases where colonization plays a dominant role, management techniques will be
applied at multi-patch level and will focus on eliminating plants before the seed sets,
notably for species with high dispersal capacities, such as wind-borne species (Petit
et al. 2011). In this chapter, we will use data from the experimental farm at Epoisses,
France, to show how the MHMM-DF model highlights the relative roles played by
different processes in plant dynamics (dormancy, dispersal and seed setting). We will
then show how the effects of a crop planted in the same patch may be taken into
account, inferring whether or not the germination period of this plant is also favorable
to that of the weed species.

5.2. Metapopulation model for plants: introduction of a dormant state

5.2.1. Dependency structure in the model

Consider a metapopulation of a plant species over C patches. The population has
two possible states: a dormant state, in which the seed bank is not observable, and a
non-dormant state, with observable, emerged plants. The (main) mechanisms
involved in the dynamics of this metapopulation are the survival of the seed bank,
colonization, germination and seed setting. Two groups of variables are used to
model these dynamics statistically, that is, for estimation purposes. The observed
variables are the set of abundance classes of the non-dormant population
in each patch c at each time step t, noted Yc,t (with values in
ΩY = {0, 1, . . . |ΩY | − 1}). The hidden variables are the set of abundance classes of
the dormant population in each patch c at each time step t, noted Zc,t (with values in
ΩZ = {0, 1, . . . |ΩZ | − 1}). The dependency structure between these different
variables should represent the different mechanisms listed above. This structure, in
the case of the MHMM-DF model for annual plants and for two patches, is shown in
Figure 5.1. The dormant population within each patch evolves following a Markovian
dynamic (the future state only depends on the current state); however, unlike a classic
HMM, Zc,t is not only dependent on Zc,t−1, but also on Yc,t and on all Yc′,t such
that c′ is sufficiently close to c for seed dispersal to occur from c′ to c. There are thus
three (groups of) variables influencing state Zc,t: Zc,t−1 via the survival of seeds in
the soil, Yc,t via the production of new seeds which are added to the seed bank and
Yc′,t via colonization of the seed bank by seeds from other patches.

Finally, in this model, the dynamics of the non-dormant population are only
dependent on the state of the local dormant population: Yc,t is only dependent on
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Zc,t−1 via a succession of processes (germination, growth of the plant, survival up to
the seed production stage), crudely summarized here under the term “emergence”.

The resulting dependency structure is illustrated in Figure 5.1. This structure is
well suited to plants, as there are no arcs connecting dormant populations in two
distinct patches. This corresponds to the fact that the dormant population (seeds in
the seed bank) is immobile, and that dispersal involves seeds produced by the
non-dormant population.
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Figure 5.1. Illustration of dependency relationships in an MHMM-DF. Case of two
patches (c = 2), that is, two hidden chains (gray nodes). The blue lines reflect the
probability of emission φ and the red lines show the probability of transition A of the
state of the hidden chain. For each time step, each chain emits an observation (black
nodes). The observations generated by all chains influence the next state of each of
the hidden chains. The interaction between chains thus passes through observations.
For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

However, this structure is not suitable for perennial plants due to the absence of
arcs between Yc,t−1 and Yc,t. This notably implies that the non-dormant population
cannot survive from t to t+1. If each time step represents a year, then this hypothesis
is verified in the case of annual plants.

5.2.2. Distributions defining the model

An MHMM-DF model is fully defined by three distributions: the initial
distribution, the emission law and the probability of transition. The first defines the
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initial distribution of all of the hidden states, that is, the abundance class of the seed
bank in each of the C patches: P (ZC

0 = zC
0 ), where ZC

0 = (Z1,0, . . . , ZC,0) and
zC
0 ∈ ΩC

Z is a realization1 of ZC
0 . The abundance classes are assumed to be

independent and identically distributed variables, such that we can write
P (ZC

0 = zC
0 ) =

∏C
c=1 γ0(zc,0), with γ0 a probability distribution on ΩZ . The

emission law then defines the probability of the abundance class of the non-dormant
population at time t, conditional to the abundance class of the seed bank at time
t − 1. This is denoted as φ(zc,t−1, yc,t) = P (Yc,t = yc,t|Zc,t−1 = zc,t−1), and
corresponds to the emergence process. Finally, the transition probability of a hidden
chain c is the probability of the abundance class Zc,t of the seed bank at time t,
conditional on the state of the seed bank at the previous time, Zc,t−1, on the state of
local standing flora Yc,t, and on the state of standing flora in other patches
{Yc′,t, c′ &= c} (or a sub-set of these patches). This transition probability,
P (Zc,t = zc,t|Zc,t−1 = zc,t−1,Y

C
t = yC

t ), is denoted as A(zc,t−1, zc,t,yC
t ), where

Y C
t = (Y1,t, . . . , YC,t). The notation used in the MHMM-DF is summarized in

Table 5.1.

Variable Domain Definition
C N∗ Number of chains (patches)
T N∗ Number of observation time steps
Zc,t ΩZ = {0, 1, . . . |ΩZ |− 1} Abundance class of the dormant

population in patch c at time t
Yc,t ΩY = {0, 1, . . . |ΩY |− 1} Abundance class of the non-dormant

population in patch c at time t
ZC

t ΩC
Z {Zc,t, 1 ≤ c ≤ C}

Y C
t ΩC

Y {Yc,t, 1 ≤ c ≤ C}

Table 5.1. Notation of variables in the MHMM-DF

Using this notation, the joint probability of the set of hidden and observed
variables, from time t = 0 to time t = T , can be decomposed as follows:

C
Π
c=1

γ0(zc,0)
T
Π
t=1

A(zc,t−1, zc,t,y
C
t )φ(zc,t−1, yc,t)

5.2.3. Parameterizing the model

Generally, samples of standing flora are relatively limited in terms of the number
of patches and/or years they cover due to the cost of sampling (in terms of time and

1 By convention, in what follows, the random variables will be represented by uppercase letters
and the realizations of these variables will be shown in lowercase.
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effort). For estimation purposes, we shall consider a parsimonious parametric version
of the MHMM-DF.

First, let us consider the probability of emission φ(zc,t−1, yc,t). For a fixed value
of zc,t−1, this will be modeled as a mixture of a Dirac on zero and a binomial
distribution. If zc,t−1 = 0, then yc,t−1 = 0. If zc,t−1 > 0, then yc,t−1 follows a
binomial distribution of parameters |ΩY | and pzc,t−1 . The probability pz (z ∈ ΩZ)
itself is modeled by a logistic regression: pz = 1

1+exp(−(µ0+µ1z/|ΩZ |)) , where µ0 and
µ1 are two parameters. The choice of a binomial distribution was guided by the fact
that only a small number of parameters are required. Furthermore, this distribution
respects an increasing relationship between the abundance class of standing flora and
that of the seed bank.

Similarly, for fixed values of zc,t−1 and yC
t , the probability of transition A is

modeled by a binomial distribution of parameters |ΩZ | and pzc,t−1,yC
t

. The second
parameter is also modeled by a logistic regression. There are several possible options
available for constructing this regression; only one will be presented here. First, there
is a natural distinction to be made between the influence of yc,t and that of standing
flora in patches other than c. Let yc̄

t = {yc′,t, c′ &= c} be the set of abundance classes
of standing flora in patches other than c at time t. The regression model is a function
of zc,t−1, yc,t and yc̄

t . It is possible to consider only a subset of yc̄
t as having an

influence on zc,t, for example, only the standing flora of patches which are
geographically close to c. Next, as yc̄

t is a multidimensional variable, it can be
summarized by a variable of dimension 1: mean(yc̄

t), its mean. This is a measure of
the mean capacity of colonization from other patches toward patch c. The logistic
regression model is thus written as:

pzc,t−1,yC
t
=

1

1 + exp(−(ν0 + ν1 × zc,t−1

|ΩZ | + ν2 × yc,t

|ΩY | + ν3 × mean(yc̄
t )

|ΩY | ))
,

where ν0, ν1, ν3 and ν3 are four parameters.

Finally, the initial distribution γ0 of the dormant state in patch c is modeled by a
binomial distribution of parameters |ΩZ | and pτ , where

pτ =
1

1 + exp(−τ) .

This parameterization of the MHMM-DF uses seven parameters (see Table 5.2).
Its generic identifiability can be demonstrated where C > 2 and T > 7 (see Le Coz
et al. 2019).
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5.2.4. Linking the parameters of the model with the ecological
parameters of the dynamics of an annual plant

The interpretation of all seven parameters of the model is shown in Table 5.2.
In addition to these parameters, other quantities of interest can be calculated with
respect to this model, such as the probability of colonization of the local seed bank,
pcol (whether by other patches or through exogenous colonization); the probability
of the seed bank surviving between two time steps (s); and finally, the probability of
germination (g).

Calculating pcol: the probability of colonization of the local seed bank, whether
from other patches or exogenous colonization, is defined by

pcol = 1− P (Zc,t = 0|Yc,t = 0, Zc,t−1 = 0,mean(yc̄
t) ∈ ΩY ). [5.1]

This is the probability of the seed bank being non-empty at time t, in the absence
of seed bank at time t− 1 and in the absence of local standing flora.

Let pexo be the probability of exogenous colonization of the seed bank, and
pneighbor the probability of colonization by another patch close to c. A distinction
can be made between these two types of colonization in the MHMM-DF:

pexo = 1− P (Zc,t = 0|Yc,t = 0, Zc,t−1 = 0,mean(Y c̄
t) = 0) [5.2]

and, supposing the exogenous colonization and neighbor colonization events to be
independent,

(1− pexo)(1− pneighbor) =

P (Zc,t = 0|Yc,t = 0, Zc,t−1 = 0,mean(Y c̄
t) ∈ {1, ..., |ΩY |− 1}). [5.3]

pcol, pexo and pneighbor can thus be determined using equalities [5.1] to [5.3], as the
right-hand side terms can be estimated by simulation.

Calculating s: considering exogenous colonization to be independent of the
survival of the seed bank, we have

(1− pexo)(1− s) = P (Zc,t = 0|Yc,t = 0, Zc,t−1 ∈ ΩZ ,mean(Y c̄
t) = 0)

Once pexo has been calculated, we can then calculate s.
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Calculating g: the probability g of dormant seeds germinating is defined as the
probability of observing a non-zero abundance class of plants in the patch when the
seed bank is not empty:

g = P (Yc,t &= 0|Zc,t−1 &= 0).

The different probabilities involved in calculating s and g can also be estimated by
simulation.

Parameters Interpretation for annual plants
Initial distribution P (zc,0) = γ0(zc,0)

τ Mean trend
Emergence from dormant state P (yc,t|zc,t−1) = φ(zc,t−1, yc,t)

µ0 1/(1 + e−µ0−µ1/|ΩZ |) lower bound of the probability
of germination

µ1 Influence of the seed bank on the next standing population
Dynamics of the seed bank P (zc,t|zc,t−1,y

C
t ) = A(zc,t−1, zc,t,y

C
t )

ν0 Exogenous colonization by propagule rain
ν1 Influence of the previous year’s seed bank
ν2 Influence of local seed production
ν3 Influence of seed production in other patches

Table 5.2. Interpretation of parameters of the MHMM-DF
based on binomial distributions and logistic regression

5.2.5. Estimation

The classic method for estimating the parameters of an HMM is via the
EM (expectation–maximization, Dempster et al. 1977) algorithm. This iterative
algorithm alternates between a step E, in which a conditional expectation is
calculated for the current value of parameters, and a maximization step M, in which
parameter values are updated. In the case of a hidden Markov chain, step E relies on
the use of the forward–backward algorithm (Rabiner 1989), which uses the linear
structure of the model alongside variable elimination principles to calculate the
conditional probabilities of hidden variables, given observed values, in an efficient
manner. Although the MHMM-DF may be seen as an HMM in which ZC

t is the
hidden variable at time t, the forward–backward algorithm is difficult to apply
directly in this case due to the multi-dimensional nature of ZC

t . The size of the
domain of ZC

t means that implementation of step E rapidly becomes impossible.

However, the structure of the MHMM-DF is such that, conditional on
observations, each hidden chain is independent. By rewriting of the equations in the
forward–backward algorithm, step E can be considered as C independent
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forward–backward algorithms. This implementation remains exact, and its
complexity is linear as a function of the number of patches (a direct application of the
forward–backward to ZC

t would result in exponential complexity).

Details of the formulas used in the EM algorithm for an MHMM-DF, along with a
study of its behavior using simulated data, can be found in Le Coz et al. (2019).

5.2.6. Model selection

In practice, there are several choices that must be made when constructing an
MHMM-DF for a given plant: whether or not the species is dormant, how far seeds
can disperse, whether external factors affect dynamics and thus the parameters to
estimate, etc. These choices can be made by estimating several variants of the model
and selecting the version that maximizes a model selection criterion, such as the BIC
(Schwarz 1978). All likelihood-based criteria are calculable, as this quantity is easy
to evaluate using output from the forward–backward algorithm.

5.3. Dynamics of weed species in cultivated parcels

5.3.1. Dormancy and weed management in agroecosystems

Dormancy may be defined as an internal state of a seed that prevents it from
germinating despite favorable thermal, gaseous and hydric conditions
(Benech-Arnold et al. 2000). Dormancy is not a binary characteristic: a continuum
exists between dormant and non-dormant states. An increasing level of dormancy
corresponds to a reduction in the range of environmental conditions in which
germination will occur, by a reduction in germination speed, and by a reduction in
the percentage of seeds that will finally germinate. The form of dormancy by which a
seed stock can be preserved is known as secondary dormancy2, which is an effect of
environmental conditions (Baskin and Baskin 1998). The intensity of dormancy is
dependent on environmental conditions and differs between species. Generally
speaking, high temperatures, short days, dry conditions and easy access to nutrients
during seed setting by the mother plants results in low dormancy levels in the
produced seeds (Baskin and Baskin 1998). Secondary dormancy is a means of
synchronizing the germination phase with the cycle of the seasons. The classification
of species by field germination time also reflects the periodicity of their dormancy. A
distinction can be made between species for which the minimum period of dormancy
ends in early fall (geraniums, blackgrass) or late fall (stickywilly, ivy-leaved
speedwell), spring (curlytop knotweed) or summer (amaranths, crabgrass) or which

2 Not to be confused with primary dormancy, which occurs at the point where the seed reaches
maturity on the mother plant, and often disappears in a matter of months.
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have an almost non-existent dormant period (groundsel, common field-speedwell).
As the majority of weed species have a physiological dormancy period, their level of
dormancy is governed by seasonal variations in temperature and soil humidity. For
example, for common knotgrass and pale persicaria, which both emerge in the
spring, the cooler temperatures of fall mark the end of the fully dormant period and
by mid-winter, the seed is no longer dormant. Germination will then occur as soon as
soil temperature exceeds a certain threshold in the spring. The warm temperatures of
late spring trigger the start of the dormant state, and germination capacity
progressively diminishes through May and June, with maximum dormancy attained
in early summer. Winter species (fall germination, spring flowering) have an opposite
dormancy cycle, in which high temperatures signal the end of dormancy, and low
temperatures during the winter trigger or maintain dormancy.

5.3.2. Description of the data set

Studies carried out in the experimental farm at Epoisses, France, from 2000 to
2017 (see Figure 5.2) focused on designing and testing low-herbicide cropping
(without tillage, with or without mechanical weeding) and evaluating the agronomic,
economic, environmental and social performances of these systems (Adeux et al.
2019). At the time of writing, this focus has shifted onto testing and evaluating
pesticide-free systems via the CA-SYS platform (Cordeau et al. 2015a).

Figure 5.2. Layout of the 10 fields and 90 patches in the experimental farm at
Epoisses. The edges of each field are shown in black. Each field is broken down into
nine patches (plus a tenth zone not used in this study). For a color version of this figure,
see www.iste.co.uk/peyrard/ecology.zip

For the purposes of our study, we shall use data concerning weed flora from 2000
to 2017. The experimental setup consisted of two groups of five fields. Each of these
10 fields was split into nine zones, corresponding to the patches in the MHMM-DF
(see Figure 5.2). The density of weeds per square meter was measured each year, taken
as the mean value of four quadrats, taken in different positions each time. Data were
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collected on a maximum of five occasions, before and after weeding. For a given year
and plot, the data used to estimate the MHMM-DF are that relating to the final date of
sampling on the plot. In 90% of cases, data were collected five times, and thus reflect
the state of the weed species at the same point in the growing season. Pre-weeding
observations account for less than 10% of the data.

Over the course of the whole experimental period (2000–2017), a total of 70
weed species were identified. For the purposes of this study, we have chosen to focus
on seven species: Chenopodium album, Solanum nigrum, Alopecurus myosuroides,
Fallopia convolvulus, Aethusa cynapium, Galium aparine and Polygonum aviculare
(Cordeau et al. 2020). These species are diverse in terms of germination period and
in the potential quantity of seeds produced by each individual plant. They were also
among the most common species found in the test fields at Epoisses. Abundance
classes were defined by splitting the interval of observed data values (log
transformed) into four intervals of equal width (the first class is that of a null
abundance). Thus, |ΩY | = 5 and we have also chosen |ΩZ | = 5. The class
boundaries for the seven weed species in our study are shown in Table 5.3. Other,
less empirical divisions have been tested (Barralis scale, search for the closest
stepwise function to the data histogram), but have proven unsatisfactory due to the
potential existence of empty classes.

Class 1 2 3 4 5
Alopecurus myosuroides 0 ]0, 2.39] ]2.39, 15.59] ]15.59, 101.44] > 101.44

Chenopodium album 0 ]0, 1.16] ]1.16, 3.65] ]3.65, 11.48] > 11.48
Solanum nigrum 0 ]0, 1.36] ]1.36, 5.05] ]5.05, 18.71] > 18.71
Fallopia convulus 0 ]0, 1.47] ]1.47, 5.89] ]5.89, 23.59] > 23.59

Aethusa cynapium 0 ]0, 1.06] ]1.06, 3.03] ]3.03, 8.68] > 8.68
Galium aparine 0 ]0, 1.39] ]1.39, 5.22] ]5.22, 19.64] > 19.64

Polygonum aviculare 0 ]0, 1.19] ]1.19, 3.85] ]3.85, 12.44] > 12, 44

Table 5.3. Boundaries of the five abundance classes
for the seven weed species in our study

A study of the Bravais–Pearson correlation between the abundance of observed
flora in a patch at time t and that of other patches at time t + 1 shows that this value
becomes negligible at distances longer than 60 m, whatever the species in question.
Thus, in calculating the function mean(yc̄

t), we only include patches at a distance of
less than 60 m from patch c. Based on this choice, a patch may be colonized from
a maximum of six other patches. The total number of patches is 88 (90, minus two
patches in which no flora was observed in 2003).
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5.3.3. Comparison with an HMM with independent patches

For illustrative purposes, let us consider how the inclusion of inter-patch
colonization affects the estimation of the parameters of the dynamics of a weed
species. To do this, we shall compare the estimated values of pcol and s obtained for
the MHMM-DF and for the model presented in Pluntz et al. (2018). The latter is an
HMM that operates at parcel level: patches are considered to be independent, and
colonization occurs uniquely in the form of a propagule rain. This means that, unlike
the MHMM-DF, this model is non-spatial and pcol cannot be broken down into pexo
and pneighbor. Furthermore, this model uses a presence–absence representation for
both the seed bank and standing flora, and the probability of setting seed is fixed at 1.

The estimators for both models are shown in Table 5.4. We see that the estimated
colonization value is higher using MHMM-DF than with the non-spatial HMM for
all seven species. The main reason for this lies in the fact that the probability of seed
setting is set at 1 for all weed species in the non-spatial model, but in practice, certain
species rarely set seed, or only set seed in certain environments. Thus, while
Chenopidium album and Solanum nigrum, for example, can grow in wheat fields,
they will not set seed in this habitat. In this case, the overestimation of the seed
supply resulting from seed setting is offset “mechanically” by a lower estimation of
the probability of colonization.

Species Model s pcol pnbor g
Non-spatial 0.56 0.25 - 0.61Alopecurus myosuroides MHMM-DF 0.54 0.37 0.10 0.64
Non-spatial 0.79 0.15 - 0.33Chenopodium album MHMM-DF 0.66 0.23 0.11 0.38
Non-spatial 0.71 0.15 - 0.36Solanum nigrum MHMM-DF 0.72 0.49 0.22 0.21
Non-spatial 0.82 0.19 - 0.61Fallopia convulus MHMM-DF 0.80 0.31 0.02 0.61
Non-spatial 0.76 0.11 - 0.55Aethusa cynapium MHMM-DF 0.61 0.24 0.08 0.44
Non-spatial 0.79 0.16 - 0.52Galium aparine MHMM-DF 0.77 0.47 0.26 0.48
Non-spatial 0.59 0.17 - 0.50Polygonum aviculare MHMM-DF 0.55 0.23 0.15 0.44

Table 5.4. Probabilities of survival, colonization and germination from
a dormant state in the non-spatial HMM and MHMM-DF models

Furthermore, the estimation of survival is lower in the MHMM-DF than in the
non-spatial HMM for all seven species. Finally, we note that the estimated value for
germination after dormancy is similar for both models; this is as expected, as this
value is not dependent on local abundance.
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5.3.4. Influence of crops on weed dynamics

Twenty different crop species were sown over the 17-year study period: 73.53%
fall crops (oilseed rape, wheat, barley, triticale), 11.76% summer crops (soy beans,
sorghum, sunflower), 11.76% spring crops (peas, barley) and 2.94% perennial crops
(alfalfa). It is important to note that data for the same weed species in different crops
were not collected at the same time of year (Adeux et al. 2019). Weed germination
is highly dependent on environmental conditions, notably those resulting from tillage
(Cordeau et al. 2017b). Some of the fields at Epoisses were not tilled, a factor known
for limiting the germination of most weed crops (Cordeau et al. 2015b), particularly
in cases where seed/soil contact is poor and in dry summers (Cordeau et al. 2018).
Furthermore, Donohue (2005) found that seed germination is highly dependent on
the season. Thus, the density of a weed species varies according to the planted crop
(see Table 5.6). For this reason, we split crops into two groups for the purposes of our
study: winter crops (sown in the fall) and summer crops (sown in spring-summer). It is
thus possible, for each weed species, to distinguish between the dynamics of patches
bearing a summer crop and patches with a winter crop. However, the type of crop
grown in neighboring patches, contributing to the colonization of each local patch,
will not be taken into account.

Our results show that the dynamics of all species except Alopecurus myosuroides
(blackgrass) and Aethusa cynapium are best described by a model which takes
account of the planted crop type (see Table 5.5). The exception of the species cited
above is likely due to their generalist and widespread nature. Furthermore, the case of
Alopecurus myosuroides is different from that of other weeds, as seeds were sown in
a stock zone of every field at Epoisses, independent of the crop, at the beginning of
the experiment.

Three of the seven species in our study exhibit stronger germination from
dormancy in the presence of a summer crop (see Table 5.6): Chenopodium album,
Solanum nigrum and Polygonum aviculare. The others (Alopecurus myosuroides,
Fallopia convulus, Aethusa cynapium and Galium aparine) perform better in this
sense in the presence of a winter crop. This corresponds to the fact that the first three
species naturally emerge in spring-summer, while the four remaining species are
essentially autumnal. Fallopia convulus is a spring plant, but emerges particularly
early, and is frequently encountered in winter crops.

Finally, for Chenopodium album and Polygonum aviculare, the probability of the
seed bank being maintained from year t to year t+ 1 is significantly higher when the
crop at t+ 1 is a summer crop (see Table 5.6).
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Model with Model withoutBIC crop seasonality crop seasonality
Alopecurus myosuroides 2697 2634

Chenopodium album 1655 1670
Solanum nigrum 1778 1875

Fallopia convolvulus 3066 3088
Aethusa cynapium 2804 2795

Galium aparine 2090 2095
Polygonum aviculare 2296 2301

Table 5.5. BIC selection values for models with and without taking
account of crop seasonality for each species. The best BIC

value for each species is in bold

Species Crop season s g Density
Winter 0.55 0.69 9.08Alopecurus myosuroides Summer 0.46 0.51 7.66
Winter 0.47 0.12 0.86Chenopodium album Summer 0.85 0.80 1.23
Winter 0.37 0.20 1.36Solanum nigrum Summer 0.26 0.87 3.93
Winter 0.74 0.63 4.17Fallopia convulus Summer 0.80 0.62 2.46
Winter 0.60 0.58 2.44Aethusa cynapium Summer 0.67 0.32 1.36
Winter 0.60 0.84 2.21Galium aparine Summer 0.74 0.21 4.18
Winter 0.40 0.37 2.02Polygonum aviculare Summer 0.85 0.72 1.23

Table 5.6. Probabilities of survival and emergence from a dormant state in the
MHMM-DF model taking account of local crop seasonality. The final column shows

plant density per square meter (averaged over all parcels for the same season)

5.4. Discussion and conclusion

In this chapter, we presented a statistical model with hidden variables for the
dynamics of annual plants, combining two approaches: an ecological approach,
based on metapopulation dynamics which, in its initial form, ignores the state of the
seed bank; and an agronomic approach, which takes account of the seed bank but
generally models colonization as a propagule rain. The different processes involved
(survival of the seed bank, emergence from a dormant state, colonization) are
described in a relatively simple manner, involving the use of qualitative data
(abundance classes). Nevertheless, this study demonstrates that an HMM-based

Copyright Iste 2022 / File for personal use of Valentin Lauret only



Coupled Hidden Markov Models and Annual Plant Dynamics 111

approach can be used to extract relevant information about the dynamics of several
species with marked biological differences (germination period, phenology and seed
production).

We opted for a parsimonious approach to modeling, using a binomial distribution
combined with logistic regression. The advantage of this approach is that the number
of parameters remains constant, whatever the number of abundance classes. Other,
more classic parameterizations of abundance classes, such as a cumulative logit
distribution or a cumulative Beta distribution, could also be used (Herpigny and
Gosselin 2015); however, more parameters would need to be estimated in these cases.

The fact that the effect of the set of abundance classes of standing flora in
neighboring patches has been summarized here using the effect of the average class
is another point for discussion. Several abundance class vectors may result in the
same average value, without necessarily corresponding to the same colonization
potential. Le Coz (2019) uses a different form of single-value representation,
arranging the vector of abundance classes in alphabetical order. Each possible
configuration of neighborhood states is thus distinct from the others, and
configurations are arranged in order of increasing colonization potential. Another
option in this case would be to introduce a weighting for abundance classes based on
the distance between the colonizing and receiving parcels.

One advantage of the MHMM-DF lies in the combination of a clear
representation of the complex spatiotemporal dependences present in the dynamics
of plant populations including dormancy behaviors with an estimation method of
reasonable complexity (linear with respect to C, the number of patches). Le Coz
et al. (2019) present a study of the behavior of the EM algorithm using simulated
data, and show that, except in cases where the hidden variables take only extreme
values, the quality of the estimators produced is good. However, this method – like
all spatiotemporal methods – only works if enough observable population data are
available. From this perspective, the Epoisses dataset is exceptional in terms of the
quantity and quality of data available. Note that it is possible to compensate for
sampling limitations, in terms of the number of time steps, by increasing the spatial
range of the sample, since the number of hidden chains is not a limiting factor in EM.
The estimators obtained should be interpreted having in mind of the spatial scale of
patches and of the distances between patches. The estimated probability of
colonization will differ depending on the relation between patch surface and the
average seed dispersal distance, which may be similar or significantly different.
Finally, the quality of estimators is highly dependent on the quality of observations,
that is, of the abundance class for standing flora in a patch. Different species have
different occurrence frequencies. Increasing the sampled surface (e.g. to a patch size
of 2,000 m) may limit the number of observations in which zero specimens of a
species are identified, but this reduces the quality of the abundance estimation, even
if abundance classes are used. Reducing patch size (e.g. using quadrants) improves
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the precision of abundance estimations, but also increases the number of zero
observations.

Applying the MHMM-DF model to the estimation of weed species dynamics in
crops provides us with a clearer understanding of these dynamics. In previous studies,
colonization has been modeled as a propagule rain, with no spatial localization of the
source(s) of these seeds. In agronomic terms, our results highlight the influence of crop
choice on the dynamics of a weed species, as one might expect, since the chosen crop
determines the sowing period and thus the weed species which are likely to germinate
in the same patch (Cordeau et al. 2017b). Colonization also has a role to play; given
the size and distribution of patches, this mostly occurs on an intraparcellar level or
across plots in the area surrounding the boundary, which is entirely logical given the
known dispersal distances of the species in question.

The R code used to analyze the data from the experimental farm at Epoisses is
available to download3. This code includes observations, transformed into abundance
classes, for each of the seven species and all 88 patches covered by our study, along
with inter-patch spatial correlation data. The code can be used to estimate parameters
for the MHMM-DF with or without crop seasonality and the subsequent ecological
parameters pcol, pexo, s and g. Finally, the code also includes calculations of the
ecological parameters of the non-spatial HMM model (Pluntz et al. 2018).

Several packages in R include functions that can be used to estimate the
parameters of a one-dimensional HMM. In theory, these functions could be used to
estimate the MHMM-DF, but the algorithmic complexity of transforming this model
into a one-dimensional HMM is exponential as a function of the number of chains;
computation would thus be impossible for cases involving large numbers of patches.
The package ensembleFHMM can be used for estimation in the case of a
multi-dimensional HMM of the factorial type (Ghahramani and Jordan 1997), in
which the hidden chains emit a shared observation for each time step. In this case, the
chains become dependent, conditional on observations; this is not true of the
MHMM-DF. The CHMM package in R is designed for another type of
multi-dimensional HMM, coupled HMMs (Brand et al. 1997), in which hidden
chains are correlated, conditionally or otherwise, with observations. Once again, the
dependency structure is different to that used in an MHMM-DF, so this package
cannot be used with our model. Nevertheless, the CHMM and FHMM packages –
both created in the context of signal processing – may prove helpful in relation to
other spatiotemporal dynamics in ecology.

In methodological terms, it is important to note that the MHMM-DF framework
itself can be extended for use with other dynamics, not simply those of annual plants,

3 https://oliviergimenez.github.io/code_livre_variables_cachees/.
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while continuing to provide an exact EM estimation of linear complexity with respect
to the number of patches. The only condition is that the hidden chains are
independent, conditional on observations. For example, assuming that the survival of
the observable population is possible from one step to the next, the model can be
used to study the dynamics of perennial plants or cryptic species. The conditional
independence of hidden chains is also maintained if an additional form of
colonization, from an observable population to the observable population of another
patch, is added; this is particularly relevant for certain animal species, which go
through a cryptic stage.
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6.1. Introduction

The study of inter-species relations within an ecosystem has been an important
theme in ecology since the publication of Charles Elton’s seminal work on food
chains (Elton 1927). Relationships between species can be represented as a network
of interactions, with nodes taking the place of biological entities (generally species)
of interest and edges (or links) representing the interactions in question. The analysis
of ecological networks is the focus of much recent ecological literature and has
enjoyed an upsurge in interest in the last 20 years, notably through the work of
Dunne et al. (2002). Networks of interactions may be studied at microscopic level
(e.g. microbial network) or at higher levels (e.g. plant–pollinator relationships). They
may represent a wide variety of interaction types, such as mutualism, competition or
predation. Figure 6.1 shows a food web made up of 106 different animal and plant
species observed on the coast of Chile. Networks may be unipartite, representing
interactions within a single group of given species (as in the food web shown in
Figure 6.1), or bipartite, if they describe relations between two different types of
entities (e.g. plant–pollinator networks, host–parasite networks, etc.). In what
follows, all networks will be considered unipartite unless otherwise stated.

Statistical Models for Hidden Variables in Ecology,
coordinated by Nathalie PEYRARD and Olivier GIMENEZ. © ISTE Ltd 2022.
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Analyzing the structure of a network may be crucial for understanding the
organization of an ecosystem, notably via the extraction of its organizational
structure in summary form. Two types of approach may be used in this context
(Miele et al. 2019). The first family of approaches are descriptive, based on different
metrics used to characterize properties at node level (e.g. centrality) or across the
whole network (e.g. nestedness (Almeida-Neto et al. 2008) or modularity (Barber
2007)). In contrast, the second group consists of aggregative approaches, focusing on
“zooming out” the network in order to detect groups of species with similar
interaction properties. While it is possible to detect compartments (or modules,
Krause et al. (2003)), several recent works have followed the pathway laid down by
Allesina and Pascual (2009) based on the notion of “functional” groups of species
sharing the same connection pattern (in the sense of ecological interactions). For
example, species at the same trophic level may be seen as a group. In this context, a
distinction may be made between purely algorithmic approaches and those based on
generative probabilistic models. The latter category is the subject of this chapter.
More specifically, we shall focus on a mixture-based probabilistic approach using
stochastic block models (SBMs). Introduced in the field of sociology by Snijders and
Nowicki (1997), SBMs work on the premise that nodes are divided into latent blocks
(groups, clusters, etc.) containing entities with similar connection profiles. SBMs
have been shown to be effective for identifying groups of nodes or blocks, which play
the same role in a network, irrespective of the type of structure in question. SBMs
have been extended for bipartite networks in the form of latent block models (LBM)
(Govaert and Nadif 2003) or bipartite SBM (biSBM; Larremore et al. (2014)), which
is equivalent (Wyse et al. 2017). Blocks are introduced as latent variables in both
models. Unlike metric-based approaches, this probabilistic approach is agnostic, in
that it does not aim to highlight a particular structure, but rather to group nodes that
behave in the same way in the network, irrespective of the behavior itself. While this
approach was slow to be adopted in the context of ecological networks, it has
recently gained in popularity and is at the heart of an increasing number of new
applications (Allesina and Pascual 2009; Baskerville et al. 2011; Kéfi et al. 2016;
Michalska-Smith et al. 2018; Ohlmann et al. 2019; Ohlsson and Eklöf 2020; Miele
et al. 2020).

In what follows, we shall present SBMs for both unipartite and bipartite binary
networks and illustrate their flexibility (i.e. their capacity to describe a wide variety
of structures). We shall then discuss the statistical inference of these models: in this
way, starting with an observed network, a description of the relations between groups
of nodes can be obtained along with the groups themselves. Our approach will be
illustrated using two case studies of ecological networks: the Chilean food web
mentioned above (Kéfi et al. 2016), which is a directed network, and a bipartite
plant–pollinator network based on the observed interactions between plants and
pollinating insects in Tenerife in 2012 (Carstensen et al. 2018).
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6.2. Formalism

Ecological networks are made up of nodes, representing biological entities of
interest (generally species) and edges representing the interaction being studied.
Unipartite networks (interactions with a single given group of species) may be
directed, if the relationship being represented is oriented (as in the case of a food
chain), or non-directed, for example if the relationship is mutualist. In bipartite
networks, interactions occur between two predetermined groups of species
(plants–pollinators, hosts–parasites, etc.). In this case, the connection between two
nodes is often asymmetric, for example, “pollinates” or “is pollinated by”, and there
are no edges between nodes of the same nature.

Figure 6.1. The Chilean network: 1,362 trophic interactions observed in the
inter-tidal zone of the Pacific coast of Chile, involving 106 sessile or mobile animal
and plant species (Kéfi et al. 2016). For a color version of this figure, see
www.iste.co.uk/peyrard/ecology.zip

Furthermore, interactions may be treated as binary data (observed/non-observed)
or count data (e.g. as a number of observed interactions). For the purposes of this study,
we shall focus on binary interactions; the model can be extended to weighted networks
(corresponding to count data) with no great difficulty, and this case will be discussed
later. Finally, note that nodes or edges may be described by a set of covariates.

A network may be encoded as a matrix y such that yij &= 0 if the entity i is in
interaction with entity j, or 0 otherwise. In a unipartite network, the species in the
rows are the same as those in the columns, and the matrix (square) is known as an
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adjacency matrix. Generally, in this case, yii = 0, ∀i. If the relation is oriented, then
yij &= yji, otherwise ∀(i, j), yij = yji and y is symmetrical. In a bipartite network,
the nodes (entities) in the rows are not the same as those in the columns, and y is a
rectangular matrix known as an incidence matrix or bi-adjacency matrix.

The encoding of a network as a matrix is illustrated in Figures 6.2 and 6.3 for a
non-directed unipartite network and a bipartite network, respectively.

y =





0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0





..
1

.

2

.

3

.

4

Figure 6.2. Adjacency matrix and corresponding representation of the non-directed
binary network. For a color version of this figure, see

www.iste.co.uk/peyrard/ecology.zip

y =




1 1 1 1 0
0 0 1 1 1
0 0 0 0 1





..

R1

.

R2

.

R3

.C1. C2. C3. C4. C5

Figure 6.3. Incidence matrix and corresponding representation of the bipartite binary
network. For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

6.3. Probabilistic mixture models for networks

In this section, we shall present SBMs for both network types. These models work
on the assumption that the matrix y that describes the network is a realization of a
random variable Y, of which the distribution is given.

Copyright Iste 2022 / File for personal use of Valentin Lauret only



Using Latent Block Models to Detect Structure in Ecological Networks 121

6.3.1. SBMs for unipartite networks

Consider a unipartite network of size n. Let i = 1, . . . , n be the nodes and let
Yij ∈ {0, 1} be the random variable characterizing the relationship between the pair
of nodes i and j. In an SBM, nodes are assumed to be divided into K latent, that
is, non-observed, groups (blocks). A variable Zi is associated with each node i =
1, . . . , n such that Zi = k if node i belongs to group k.

Following the classic approach for mixture models, the values of Zi are assumed
to be independent and identically distributed such that ∀i = 1, . . . , n, ∀k = 1, . . . ,K

P (Zi = k) = πk [6.1]

where πk ∈ [0, 1] are such that
∑K

k=1 πk = 1. The parameter πk thus corresponds to
the probability of belonging to group k. Conditional to these latent variables, the SBM
considers the interactions Yij to be independent random variables such that:

P (Yij = 1|Zi = k, Zj = k′) = γkk′ [6.2]

Thus, the probability of interaction between any pair of nodes belonging to blocks
k and k′, respectively, is γkk′ .

REMARK.– If the relationship of interest is non-oriented, then the model is defined
only for i < j since Yji = Yij for all (i, j) and we have γkk′ = γk′k for all (k, k′). In
the opposite case, equation [6.2] is defined for all pairs (i, j) such that i &= j and γkk′

may be different from γk′k.

In what follows, we shall use the notation γ = (γkk′)k,k′=1,...,K and
π = (πk)k=1,...,K . Let θ = (γ,π) be the parameters of the model and
Z = (Zi, )i=1...,n the latent variables representing block memberships.

ILLUSTRATION.– Figures 6.4 and 6.5 show realizations of the SBM for different
parameter values (the parameters are shown on the left, the matrix on the right). For
the network shown in Figure 6.4, matrix γ contains a diagonal that is stronger than
the rest of the matrix, giving a marked modular tendency. The network shown in
Figure 6.5 is typical of a food web structure, and the blocks are essentially equivalent
to different levels of the food chain. These particular structures were chosen as both
are commonly encountered in ecology. The variety of possible choices for parameter
γ implies that the SBM is highly flexible. Furthermore, the fact that the model is
generative makes it easy to test hypotheses by simulation.
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γ =




0.5 ε ε
ε 0.6 ε
ε ε 0.7





ε = 0.1 π =

(
1

3
,
1

2
,
1

6

)

Figure 6.4. Simulation of a modular network for the parameters shown on the left.
A network realization is shown on the right in the form of an adjacency matrix

(yij = 0 corresponds to a white square and yij = 1 to a black square)

γ =




ε 0.5 ε
ε ε 0.5
ε ε ε





ε = 0.05

π =

(
1

3
,
1

3
,
1

3

)

Figure 6.5. Simulation of a food web for the parameters shown on the left. A
realization of the network is shown on the right in the form of an adjacency

matrix (yij = 0 corresponds to a white square and yij = 1 to a black square)

6.3.2. Stochastic block model for bipartite networks

Now, let us consider the case of a bipartite network of size nL×nC , with nL nodes
of a first type and nC nodes of a second type. The model shown above can be rewritten
asymmetrically, with the introduction of two sets of latent variables, representing a
co-clustering in rows and columns. For all i = 1, . . . , nL, let Zi be the variable such
that Zi = k if the entity in row i belongs to group k. Similarly, for all j = 1, . . . , nC ,

Copyright Iste 2022 / File for personal use of Valentin Lauret only



Using Latent Block Models to Detect Structure in Ecological Networks 123

Wj = g if j belongs to group g. (Zi) and (Wj) are assumed to be independent and
identically distributed such that for all (i, k) ∈ {1, . . . , nL}× {1, . . . ,K} and for all
(j, g) ∈ {1, . . . , nC}× {1, . . . , G},

P (Zi = k) = πL
k ; P (Wj = g) = πC

g , [6.3]

where πL
k ∈ [0, 1] with

∑K
k=1 π

L
k = 1, and πC

g ∈ [0, 1] with
∑G

g=1 π
C
g = 1. The

distribution of interactions is then defined conditionally on these groups: for all
(i, j) ∈ {1, . . . , nL}× {1, . . . , nC},

P (Yij = 1|Zi = k,Wj = g) = γkg. [6.4]

Just as before, this model is sufficiently flexible to adapt to a wide range of
topologies. For example, Figure 6.6 shows a nested bipartite network, in which
specialist species are in interaction with generalist species. This nested structure is
widespread in ecology. The simulated network shown in Figure 6.7 is more unusual,
featuring a structure which is both nested and modular.

γ =




0.8 0.7 0.6
0.8 0.5 ε
0.6 ε ε





ε = 0.03

πL =

(
1

3
,
1

3
,
1

3

)

πC =

(
1

3
,
1

2
,
1

6

)

Figure 6.6. Simulation of a nested bipartite network for the parameters shown on the
left. A realization of the network is shown on the right in the form of an adjacency

network (yij = 0 corresponds to a white square, yij = 1 to a black square)

In this case, θ = (γ,πL,πC) is the set of parameters of the model
Z = (Zi, )i=1...,nL , and W = (Wj , )j=1...,nC are the latent variables.

These two models are identified up to label switching.
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γ =





0.8 0.7 0.6 ε ε
0.8 0.5 ε ε ε
0.8 ε ε ε ε
ε ε ε 0.8 0.8
ε ε ε 0.6 ε
ε ε ε 0.2 ε





ε = 0.03

πL =

(
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6

)

πC =

(
2

15
,
1

5
,
4

15
,
1

5
,
1

5

)

Figure 6.7. Simulation of a bipartite network with a modular and nested structure for
the parameters shown below. A realization of the network is shown at the top of the
figure in the form of an adjacency network (yij = 0 corresponds to a white square,
yij = 1 to a black square)

6.4. Statistical inference

The aim, based on observations of the network y, is to infer parameters and
identify the latent variables. This is done by means of two processes. First, for a
given number of blocks (K in the unipartite case, (K,G) in the bipartite case), we
must identify the parameters that maximize likelihood, and the most probable groups
given the observations y; second, we must identify the optimal number of blocks,
which involves a compromise between fitting and sparsity (i.e. the number of
parameters in the model).

For simplicity’s sake, the SBM parameter estimation process will only be
presented for unipartite networks here. For an in-depth presentation of the bipartite
case, see Govaert and Nadif (2008).
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6.4.1. Estimation of parameters and clustering

First, let us consider a case with a fixed number of groups K. We wish to estimate
parameters by maximizing the likelihood. The joint distribution of the observed
variables (Yij)i,j=1,...,n and latent variables Z is easy to write because, conditional
on the groups, the values of Yij are independent and follow a Bernoulli distribution
(equation [6.2]), while variables Z are assumed to be independent (equation [6.1]):

log p(y,Z;θ) = log p(y|Z;γ) + log p(Z;π)

with

log p(y|Z;θ) = log
n∏

i=1

n∏

j=1,j #=i

γ
yij

ZiZj
(1− γZiZj )

1−yij

=
n∑

i=1

n∑

j=1,j #=i

K∑

k,k′=1

Zi=k Zj=k′(yij log γkk′ + (1− yij)

× log(1− γkk′)),

log p(Z;θ) =
n∑

i=1

K∑

k=1

Zi=k log πk

As the variables Z are non-observed, the likelihood of observations is obtained by
integrating the complete likelihood p(y,Z; θ) against the set of possible values of the
latent variables:

#(y;θ) =
∑

Z∈{1,...,K}n

exp{log p(y,Z;θ)} [6.5]

This integration over latent variables [6.5] implies that the calculation and, to an
even greater extent, the maximization of this function are complex from a numerical
perspective (the sum contains Kn terms). In this case, the expectation–maximization
(EM) algorithm is particularly suitable for likelihood maximization. However, in step
E of the algorithm, the distribution of the latent variables Z must be calculated
conditional on the observations y. In the case of the SBM, this distribution is not
factorized (conditional on the observations, the latent variables Zi are not
independent), and this prevents direct application of the algorithm. The variational
version of the EM algorithm offers an effective solution to this problem (Daudin
et al. 2008). In this case, the conditional distribution p(Z|y;θ) is approximated
within a family of simpler distributions where Zi are assumed independent, and a
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lower bound of the likelihood is maximized [6.5]. Like any EM algorithm, the
variational EM (VEM) is highly sensitive to initialization. It is, therefore, important
to test multiple, non-random initializations. Other inference methods have been
described in the literature (see Lee and Wilkinson 2019).

The outputs from the VEM algorithm are estimated parameters θ̂ and, for each
node, a probability of belonging to each block. Nodes can then be clustered into groups
using the maximum a posteriori rule, which consists of placing each observation into
the group to which it is most likely to belong:

Ẑi = argmax
Zi=1,...,K

p̂( Zi=k|y; θ̂)

We note Ẑ = (Ẑi)i=1,...,n. Bickel et al. (2013) have demonstrated the consistency
of variational estimators in the SBM, whereas Mariadassou et al. (2010) extended
the method to weighted networks. A presentation of inference methods in bipartite
networks can be found in Govaert and Nadif (2008).

6.4.2. Model selection

The number of blocks K in the SBM (or the numbers of blocks K and G in the
case of bipartite networks) is selected using a penalized likelihood criterion. Classic
criteria, such as AIC or BIC, aim to establish a compromise between model fitting
and complexity. In the case of unsupervised classification, the integrated classification
likelihood (ICL) criterion (Biernacki et al. 2000) presents the advantage of aiming to
optimize classification quality in addition to fitting data to the model, while applying a
penalty for model size. Furthermore, this criterion uses complete likelihood (which is
easy to calculate) rather than the likelihood of observations, which relies on integration
with respect to the latent variables. For a directed network, this criterion is written as:

ICL(K) = log p(y, Ẑ; θ̂)− 1

2

{
(K − 1) log n+K2 log

(
n2 − n

)}

The term (K−1) log n in the penalty corresponds to the classification, and thus to
parameters (π1, . . . ,πK) with a sum equal to 1. Term K2 log

(
n2 − n

)
corresponds

to connections, where K2 is the size of the matrix (γkk′)k,k′ and n2−n is the number
of observations ({i, j = 1, . . . , n; i &= j}). These parameter numbers must be adapted
to the case of a non-directed network in order to account for the symmetry of the
matrices.
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For a bipartite network, this criterion is written as:

ICL(K,G) = log p(y, Ẑ,Ŵ; θ̂)

−1

2
{(K − 1) log nL + (G− 1) log nC +KG log (nLnC)}

The term (K − 1) log nL + (G− 1) log nC corresponds to the two classifications,
while the quantity KG log (nLnC) corresponds to interactions, and thus takes account
of the size of the matrix (nL × nC).

This criterion has been widely used in the context of random network models
(Daudin et al. 2008; Mariadassou et al. 2010; Keribin et al. 2015), proving its
efficiency. Other criteria have been proposed in the literature (Hu et al. 2019). The
inference of the SBM (i.e. parameter estimation, clustering for a fixed number of
blocks and selection of a number of blocks using the ICL criterion) has been
implemented in R using the sbm package (Chiquet et al. 2020). This package is an
extension of the blockmodels package (Leger 2014) for simple and biSBM
inference.

6.5. Application

In this section, we shall apply the SBM analytical method described above to two
ecological networks: a food web and a plant–pollinator network.

6.5.1. Food web

Our case study covers all 1,362 trophic interactions observed in the intertidal zone
on the Pacific coast of Chile, between 106 different, sessile or mobile, animal or plant
species (Kéfi et al. 2016). The model selection procedure resulted in an SBM made up
of seven blocks of differing sizes. By definition, these blocks group together species
with similar connection patterns; we also see that the ecological characteristics of
species within a block are similar.

The first block (B1) corresponds to “superpredators” (the top of the food chain),
which have no predators except for rare predation connections between members of
the block itself (shown as a loop in Figure 6.8). Nevertheless, there is a high level of
taxonomic variation within the block, which features species as different from one
another as anemones and gulls: taxonomy (or phylogeny) is not taken into account in
the SBM approach to species grouping. Blocks B2 and B3 contain sessile mollusc
species, which are targets of superpredators and consume algae (see below). The
difference between the two blocks, as identified by the SBM, lies in the degree of
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generalism: species in block B2 consume a wider variety of prey, including those in
B6, which are not consumed by species in block B3. The species in block B4 are also
sessile, including small crustaceans, such as barnacles, and mollusks, such as
mussels, which filter water to feed on plankton and are preyed upon by a variety of
predator species. Block B5 is mostly made up of crabs, which are the exclusive
targets of certain superpredators such as birds, as we see from the single connection
leading to block B5 in Figure 6.8 (block B4, on the other hand, is the destination
point of multiple connections). Blocks B6 and B7 contain basal algae species,
including brown and red algae, respectively; as we have seen, these provide food for
various mollusk species.

The SBM model thus offers a means of summarizing the complexity inherent in
the observation of over a thousand interactions. By interpreting the parameters of the
model (the probabilities of interactions between each pair of blocks), a synthetic
description of the ecosystem can be created; Figure 6.8 is easier to read than Figure
6.1. This description is then used alongside additional information, such as taxonomy
and ecological traits.

B7

B1

B3

B6

B2

B5B4

B1

B2

B3

B4

B5

B6

B7

Figure 6.8. Schematic representation (based on Picard et al. 2009) of the estimated
seven-block SBM for the Chilean network (Kéfi et al. 2016). Left: Each square is a
block, and the thickness of the lines represents the probability of interactions between
each pair of blocks (above a threshold of 0.1, for the sake of clarity). Right: Types of
species typical of those found in each block. From top to bottom: Anemone and gull
(B1), chiton (B2), Fissurella (B3), Balanus and mussel (B4), crab (B5), Laminariale
(B6) and red algae (B7). For a color version of this figure, see www.iste.co.uk/peyrard/
ecology.zip
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6.5.2. A bipartite plant–pollinator network

In this case, the object of study is a network of interactions between plants and
pollinating insects, observed in Tenerife in 2012 (Carstensen et al. 2018). In this study,
interactions are binarized (i.e. the actual number of visits is not taken into account),
but the same approach may be used in a way which takes account of the strength of
interactions (the results in this case may be different). As the network is bipartite, we
have chosen to use a biSBM or LBM, using the ICL criterion; applying this criterion
gives a four-class model with two plant BLOCKS and two pollinator BLOCKS.

Figure 6.9. Classic representation obtained using the R bipartite package. Different
colors are used to show species belonging to the core (dark red, dark green) and to
the periphery, as described by a four-block biSBM model. Pollinators are shown at the
top, with plants at the bottom. For a color version of this figure, see www.iste.co.uk/
peyrard/ecology.zip
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The proposed block structure adopts a core–periphery structure, which is
particularly common in plant–pollinator interaction networks (Miele et al. 2020).
The first block consists of a small number of insect species (Figure 6.9, in red),
which account for the majority of edges with all plants. Unsurprisingly, the European
honey bee forms part of this BLOCK. Similarly, one block of plants contains species
involved in a large number of interactions with the majority of insects (Figure 6.9,
dark green), such as the daisy Argyranthemum frutescens. These two blocks form the
“core” of the network. The second BLOCK of insects is made up of “peripheral”
species connected to the core BLOCK of plants (Figure 6.9, orange), while peripheral
plants are linked to the core BLOCK of insect species (Figure 6.9, light green).

The LBM model thus describes a core–periphery architecture, well known in
ecology, which is traditionally observed in terms of a measure of nestedness
(Bascompte et al. 2003). It goes beyond a simple representation of the overall
network structure, as it allows species to be clustered as belonging to the core or to
the periphery. This can be important in the context of conservation policies, where
species may be targeted based on their degree of generalism.

6.6. Conclusion

Stochastic block models offer highly flexible tools for detecting the macroscopic
structure of a network. Structures such as modularity and nestedness are clearly
observed in cases where such structures are traditionally expected; nevertheless, as
no assumptions are made concerning network organization, other structures may also
be revealed.

The use of latent variables in this model provides a flexible framework, which can
easily be extended to take other types of network data into account. The distribution
of the edges can notably be adapted for use with weighted networks (Mariadassou
et al. 2010) by replacing the Bernoulli distribution in equations [6.2] and [6.4] by a
Poisson, negative binomial (Aubert et al. 2021) or Gaussian distribution, according
to the type of the weight. The effect of covariates can also be taken into account by
adopting a kind of generalized linear model. For example, consider that each pair of
nodes (i, j) is associated with a set of covariates in the vector xij . These covariates
can be integrated into the model as follows:

P (Yij = 1|Zi = k, Zj = k′) = φ(γkk′ + xT
ijβ)

In this case, the clustering represents the variability of the connection
phenomenon beyond that which can be explained by the covariates. Writing the
model in this way also permits correction by node degree. Using a covariate to
integrate a node-specific effect, the clustering process will detect any residual
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structure above and beyond the variability resulting from the number of connections
(Karrer and Newman 2011). Another possibility is to consider that latent variables
have an effect on covariates as well as on the connections in the network. In this case,
covariates are taken into account in the inference process in order to improve
clustering performance (Binkiewicz et al. 2017).

Multi-layer networks (Pilosof et al. 2017) involve the joint observation of
multiple networks of interactions. These networks may be used to represent several
different types of interactions between the same species (same nodes); in this case,
we speak of a multiplex network. The SBM approach has been extended for use with
multiplex networks by Kéfi et al. (2016) and Barbillon et al. (2016). Another type of
multi-layer network is the multipartite network: these are the natural generalization
of bipartite networks. In this case, the data used are obtained from joint observation
of multiple networks representing the interactions between species belonging to
pre-defined groups. These networks themselves may be bipartite between two
predefined groups, or unipartite, for interactions within a single group. Dáttilo et al.
(2016) has analyzed a dataset of this type, covering interactions between plants and
pollinators, plants and ants, and plants and seed dispersing birds. This type of
analysis is possible because of the extension of SBM models to multipartite networks
(Bar-Hen et al. 2020); the model is also sufficiently general to handle a variety of
other configurations. Predefined groups may be partitioned into sub-groups (blocks),
taking account of the role played by different species in all of the networks in which
they participate. In cases where interactions are observed over a period of time or a
range of different locations, the resulting networks are said to be dynamic or
spatialized, respectively. SBMs have been extended for both temporal and spatial
cases (Matias and Miele 2017; Kim et al. 2018; Longepierre et al. 2019).

Another advantage of probabilistic models is the ease with which they can be
integrated into more detailed models. The network observation process can be
modeled and linked to the SBM generative model, meaning that SBM models can be
inferred even in cases where data are missing. Furthermore, this approach may
remove sampling bias if the observation process is missing not at random; for this,
the observation process itself must be modeled (Tabouy et al. 2020). Once the SBM
has been inferred, non-observed values can then be predicted. This approach is
particularly helpful in the context of multi-layer networks where layers are observed
with varying levels of precision. One benefit of joint inference is that the
best-observed layers can be used to improve the overall inference of the model,
improving prediction quality for the least well-observed layers.

Finally, note that SBMs are a special case of probabilistic network models
including latent variables. They differ from other alternatives in that latent variables
are considered to be discrete, corresponding to structural equivalence groups. Other
latent variable models have been developed (Matias and Robin 2014); one notable
example is the latent space model (Hoff et al. 2002), in which the latent variables
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associated with the nodes are considered to exist in a continuous space, and the
probabilities of connection between nodes depend on the proximity between their
associated latent variables.

6.7. References

Allesina, S. and Pascual, M. (2009). Food web models: A plea for groups. Ecology
Letters, 12(7), 652–662.

Almeida-Neto, M., Guimaraes, P., Guimaraes Jr, P.R., Loyola, R.D., Ulrich,
W. (2008). A consistent metric for nestedness analysis in ecological systems:
Reconciling concept and measurement. Oikos, 117(8), 1227–1239.

Aubert, J., Schbath, S., Robin, S. (2021). Model-based biclustering for overdispersed
count data with application in microbial ecology. Methods in Ecology and
Evolution, 12(6), 1050–1061.

Bar-Hen, A., Barbillon, P., Donnet, S. (2020). Block models for generalized
multipartite networks: Applications in ecology and ethnobiology. Statistical
Modelling [Online]. Available at: https://doi.org/10.1177/1471082X20963254.

Barber, M.J. (2007). Modularity and community detection in bipartite networks.
Physical Review E, 76(6), 066102.

Barbillon, P., Donnet, S., Lazega, E., Bar-Hen, A. (2016). Stochastic block models for
multiplex networks: An application to a multilevel network of researchers. Journal
of the Royal Statistical Society, 180, 295–314.

Bascompte, J., Jordano, P., Melián, C.J., Olesen, J.M. (2003). The nested assembly
of plant–animal mutualistic networks. Proceedings of the National Academy of
Sciences, 100(16), 9383–9387.

Baskerville, E.B., Dobson, A.P., Bedford, T., Allesina, S., Anderson, T.M., Pascual,
M. (2011). Spatial guilds in the Serengeti food web revealed by a Bayesian group
model. PLoS Comput Biol, 7(12), e1002321.

Bickel, P., Choi, D., Chang, X., Zhang, H. (2013). Asymptotic normality of maximum
likelihood and its variational approximation for stochastic blockmodels. The Annals
of Statistics, 41(4), 1922–1943.

Biernacki, C., Celeux, G., Govaert, G. (2000). Assessing a mixture model for
clustering with the integrated completed likelihood. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(7), 719–725.

Binkiewicz, N., Vogelstein, J.T., Rohe, K. (2017). Covariate-assisted spectral
clustering. Biometrika, 104(2), 361–377.

Carstensen, D.W., Trøjelsgaard, K., Ollerton, J., Morellato, L.P.C. (2018). Local and
regional specialization in plant–pollinator networks. Oikos, 127(4), 531–537.

Chiquet, J., Donnet, S., Barbillon, P. (2020). SBM: Stochastic Blockmodels. R package
version 0.2.2 [Online]. Available at: https://CRAN.R-project.org/package=sbm.

Copyright Iste 2022 / File for personal use of Valentin Lauret only



Using Latent Block Models to Detect Structure in Ecological Networks 133

Dáttilo, W., Lara-Rodríguez, N., Jordano, P., Guimarães, P.R., Thompson,
J.N., Marquis, R.J., Medeiros, L.P., Ortiz-Pulido, R., Marcos-García, M.A.,
Rico-Gray, V. (2016). Unravelling Darwin’s entangled bank: Architecture and
robustness of mutualistic networks with multiple interaction types. Proceedings of
the Royal Society of London B: Biological Sciences, 283(1843) [Online]. Available
at: https://royalsocietypublishing.org/doi/10.1098/rspb.2016.1564.

Daudin, J.J., Picard, F., Robin, S. (2008). A mixture model for random graphs.
Statistics and Computing, 18(2), 173–183.

Dunne, J.A., Williams, R.J., Martinez, N.D. (2002). Food-web structure and network
theory: The role of connectance and size. Proceedings of the National Academy of
Sciences, 99(20), 12917–12922.

Elton, C. (1927). Animal Ecology. Sidgwick and Jackson, London.
Govaert, G. and Nadif, M. (2003). Clustering with block mixture models. Pattern

Recognition, 36(2), 463–473.
Govaert, G. and Nadif, M. (2008). Block clustering with Bernoulli mixture models:

Comparison of different approaches. Computational Statistics and Data Analysis,
52(6), 3233–3245.

Hoff, P.D., Raftery, A.E., Handcock, M.S. (2002). Latent space approaches
to social network analysis. Journal of the American Statistical Association,
97(460), 1090–1098.

Hu, J., Qin, H., Yan, T., Zhao, Y. (2019). Corrected Bayesian information criterion for
stochastic block models. Journal of the American Statistical Association, 115(532),
1771–1783.

Karrer, B. and Newman, M.E. (2011). Stochastic blockmodels and community
structure in networks. Physical Review E, 83(1), 016107.

Kéfi, S., Miele, V., Wieters, E.A., Navarrete, S.A., Berlow, E.L. (2016). How
structured is the entangled bank? The surprisingly simple organization of multiplex
ecological networks leads to increased persistence and resilience. PLoS Biology,
14(8), 1–21.

Keribin, C., Brault, V., Celeux, G., Govaert, G. (2015). Estimation and selection
for the latent block model on categorical data. Statistics and Computing, 25(6),
1201–1216.

Kim, B., Lee, K.H., Xue, L., Niu, X. (2018). A review of dynamic network models
with latent variables. Statistics Surveys, 12, 105–135.

Krause, A.E., Frank, K.A., Mason, D.M., Ulanowicz, R.E., Taylor, W.W. (2003).
Compartments revealed in food-web structure. Nature, 426(6964), 282–285.

Larremore, D.B., Clauset, A., Jacobs, A.Z. (2014). Efficiently inferring community
structure in bipartite networks. Physical Review E, 90(1), 012805.

Lee, C. and Wilkinson, D.J. (2019). A review of stochastic block models and
extensions for graph clustering. Applied Network Science, 4(1), 122.

Copyright Iste 2022 / File for personal use of Valentin Lauret only



134 Statistical Models for Hidden Variables in Ecology

Leger, J.-B. (2014). Wmixnet: Software for clustering the nodes of binary and valued
graphs using the stochastic block model. Preprint arXiv:1402.3410.

Longepierre, L. and Matias, C. (2019). Consistency of the maximum likelihood and
variational estimators in a dynamic stochastic block model. Electronic Journal of
Statistics, 13(2), 4157–4223.

Mariadassou, M., Robin, S., Vacher, C. (2010). Uncovering latent structure in valued
graphs: A variational approach. The Annals of Applied Statistics, 4(2), 715–742.

Matias, C. and Miele, V. (2017). Statistical clustering of temporal networks through a
dynamic stochastic block model. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 79(4), 1119–1141.

Matias, C. and Robin, S. (2014). Modeling heterogeneity in random graphs through
latent space models: A selective review. ESAIM: Proceedings and Surveys, 47,
55–74.

Michalska-Smith, M.J., Sander, E.L., Pascual, M., Allesina, S. (2018). Understanding
the role of parasites in food webs using the group model. Journal of Animal
Ecology, 87(3), 790–800.

Miele, V., Matias, C., Robin, S., Dray, S. (2019). Nine quick tips for analyzing
network data. PLoS Computational Biology, 15(12), e1007434.

Miele, V., Ramos-Jiliberto, R., Vázquez, D.P. (2020). Core–periphery dynamics in a
plant–pollinator network. Journal of Animal Ecology, 89(7), 1670–1677.

Ohlmann, M., Miele, V., Dray, S., Chalmandrier, L., O’Connor, L., Thuiller, W.
(2019). Diversity indices for ecological networks: A unifying framework using Hill
numbers. Ecology Letters, 22(4), 737–747.

Ohlsson, M. and Eklöf, A. (2020). Spatial resolution and location impact group
structure in a marine food web. Ecology Letters, 23(10), 1451–1459.

Picard, F., Miele, V., Daudin, J.-J., Cottret, L., Robin, S. (2009). Deciphering the
connectivity structure of biological networks using MixNet. BMC Bioinformatics,
10(6), S17.

Pilosof, S., Porter, M.A., Pascual, M., Kéfi, S. (2017). The multilayer nature of
ecological networks. Nature Ecology & Evolution, 1(4), 0101.

Snijders, T.A.B. and Nowicki, K. (1997). Estimation and prediction for stochastic
blockmodels for graphs with latent block structure. Journal of Classification,
14(1), 75–100.

Tabouy, T., Barbillon, P., Chiquet, J. (2020). Variational inference for stochastic
block models from sampled data. Journal of the American Statistical Association,
115(529), 455–466.

Wyse, J., Friel, N., Latouche, P. (2017). Inferring structure in bipartite networks using
the latent blockmodel and exact ICL. Network Science, 5(1), 45–69.

Copyright Iste 2022 / File for personal use of Valentin Lauret only



7

Latent Factor Models: A Tool for
Dimension Reduction in Joint
Species Distribution Models

Daria BYSTROVA1, Giovanni POGGIATO1,2, Julyan ARBEL1 and
Wilfried THUILLER2

1University of Grenoble Alpes, Inria, CNRS, Grenoble INP, Laboratoire Jean
Kuntzmann (LJK), France

2University of Grenoble Alpes, CNRS, University of Savoie Mont Blanc, Laboratoire
d’Ecologie Alpine (LECA), France

7.1. Introduction

Understanding how species are distributed in space has been one of the main
goals of ecology. In particular, investigating which factors drive species distributions
within communities, across regions or along environmental gradients can improve
our understanding of fundamental ecological processes underlying such patterns, as
well as our ability to anticipate future biodiversity changes (Thuiller et al. 2013;
Guisan et al. 2017). When building models to explain and predict the distribution of
organisms, we necessarily need to ask the same questions as the early biogeographers.
It is now clear that three main conditions need to be met for a species to occupy a site
and maintain populations (see Figure 7.1, Pulliam 2000; Lortie et al. 2004; Soberon
2007):

– the species has to physically reach the site, that is, to access the region (Barve
et al. 2011);
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– the abiotic environmental conditions (i.e. temperature, precipitation, and so on)
must be physiologically suitable for the species;

– the biotic environment (interactions with other species) must be suitable for the
species.

..

Biotic

.

Abiotic

.

Dispersal

.

Actual geographic
distribution

Figure 7.1. The three factors that determine the actual distribution of a species
(Soberon and Peterson 2005). For a color version of this figure, see

www.iste.co.uk/peyrard/ecology.zip

The first condition is a matter of species dispersal capacity from those areas
previously occupied by the species. It includes the biogeographic history of the
species, and thus all factors limiting its distribution from the place where it first
originated, such as barriers to migration, biotic and abiotic dispersal vectors, rare
long distance dispersal, etc.

The second condition is the matter of abiotic habitat suitability for the target
species, which means that the combination of abiotic environmental variables at the
site – often referred to as environmental suitability – are within the range of
environmental conditions that the species requires to grow and maintain viable
populations. These suitable environmental conditions are what ecologists call the
environmental niche (Hutchinson 1957).

The third condition concerns biotic interactions, that is, interactions with other
organisms, either positive (commensalism, mutualism) or negative (competition,
predation), which themselves are influenced by the environment through their
influence on all organisms in the local community.

From a statistical point of view, the most common tools to model how species are
distributed in space are species distribution models (SDMs; Guisan and Thuiller
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2005). There are a variety of SDMs that differ in their underlying statistical
algorithms and flexibility (Guisan and Thuiller 2005; Merow et al. 2014; Guisan
et al. 2017), but they all relate the presence or abundance, and sometimes the
absence, of a species to a set of environmental variables and project this relationship
in space and/or time. While SDMs have proven to be very useful and reliable in many
different areas and fields (for reviews, see Guisan et al. 2017; Yates et al. 2018), they
also have well-known limitations and assumptions that run counter to ecological
niche theory (Guisan and Zimmermann 2000) and that may question the robustness
of their predictions. A first major criticism of SDMs is that they model species
independently of each other, making the assumption that species respond
individualistically to the environment. As a result, SDMs can only capture the
implicit combined effect of both abiotic and biotic environments. Despite these
limitations, researchers have also used SDMs to predict species communities in space
and time. In that case, single species predictions are simply stacked together (e.g.
stacked SDMs; see Guisan and Thuiller 2005) by summing either the species’
probabilities of occurrence (Calabrese et al. 2014) or the binary-transformed
predictions (Guisan and Rahbek 2011). In the end, going from single species
predictions to species communities commonly relies on a two-step procedure without
any consideration of error propagation and without a joint-estimation of all model
parameters.

With the increasing availability of community data (thanks to new sampling
techniques like environmental DNA (eDNA) metabarcoding; see Taberlet et al.
2012), researchers now aim to model community as whole, and not as the stacked
response of species (Clark et al. 2014). The species are then modeled together, giving
birth to joint species distribution models (JSDMs; Pollock et al. 2014; Ovaskainen
et al. 2017; Clark et al. 2017). These models estimate the relationship of each species
with respect to environmental covariates through a regression, like SDMs, and
additionally infer a correlation matrix among species from the regression residuals.
This correlation matrix reflects species co-occurrence patterns not explained by the
environmental predictors and may arise from model mis-specifications, missing
covariates or, importantly, species interactions. Since the number of parameters in the
residual correlation matrix scale quadratically with the number of species, these
methods are computationally challenging. Latent factor models, which provide a
low-rank approximation of this matrix, have naturally raised as a computationally
efficient solution for JSDMs (Warton et al. 2015). In this chapter, we present latent
factor models in the context of JSDMs, emphasizing their usefulness in community
ecology. We apply latent factor models to plant species along 18 elevation gradients
in the French Alps, belonging to the long-term observatory ORCHAMP
(www.orchamp.osug.fr).

Within this book, two other chapters, Chapters 8 and 9, also develop
methodologies for JSDMs. Chapter 8 focuses on the multivariate Poisson log-normal
(PLN) model with abundance data, while ours essentially covers presence–absence
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data. Inference for this PLN model is done in a classical (non-Bayesian) setting with
a variational approximation, while we follow a Bayesian approach and use a Markov
chain Monte Carlo algorithm to sample from the posterior distribution, thus offering
posterior credible intervals. Chapter 9 has a slightly different focus on how to
combine predictors into components in order to lead to optimal learning. A classical
(non-Bayesian) approach is used, and the case study tackles abundance data.

7.2. Joint species distribution models

To study species distribution, we relate a response variable Yn to a set of p
environmental covariates Xn = (Xn!)

p
!=1, at each site n = 1, . . . , N . Yn ∈ RS is a

vector where each element Yns contains the observation for species s = 1, . . . , S at
site n. Most JSDMs are based an extension of generalized linear models (GLMs),
where they assume that the response variable is distributed as F , whose mean is
given by a regression term and a residual multivariate random effect. For species s at
site n, this is written:

Yns ∼ F (µns,φs) [7.1]

g(µns) = β0s + t(βs)Xn + ens [7.2]

en
iid∼ NS(0,Σ), [7.3]

where F is the assumed distribution for the data with mean µ and dispersion
parameter φs (which is usually not accounted for when modeling presence–absence
data), and t(β) denotes the transposition of β. Function g is called the link function.
The vectors β0s and βs represent the intercept and regression coefficients for species
s that describe the relationship between each species and the environmental
covariates. Because of these coefficients, we can therefore define the suitable
environmental conditions for each species, the environmental niche. Note here that
the environmental covariates could also integrate the abundance or presence–absence
of species (REF). Residual correlations among species are captured by Σ, a
symmetric and positive-definite variance–covariance matrix (that has the constrain to
be a correlation matrix for presence–absence data). The elements of Σ reflect species
co-occurrence patterns that are not explained by the environmental predictors, and
can arise from noise in the data, model misspecification, missing predictors and
species associations.

The choice of the distribution F and the link function g depends on the response
variable Yn to be modeled. JSDMs typically model presence–absence, counts,
biomass and many others due to the heterogeneity of ecological data and the
sampling campaigns. For presence–absence data, most models assume a Bernoulli
distribution and a probit link function (McCullagh and Nelder 1989, see GLM).
However, this is quite common to replace the probit link function by a latent variable
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parameterization (Chib and Greenberg 1998) to make the model computationally
more efficient. Since species community data may contain observations of species
documented in multifarious ways (e.g. presence–absence and counts), several JSDMs
have been implemented to address this challenge (Ovaskainen et al. 2017; Clark
et al. 2017).

Interestingly, many JSDMs can model the regression coefficients hierarchically:

βs
iid∼ Np(µ,V ) [7.4]

This allows for a share of information across species on their response to the
environment, so that the estimation of the niche of rarely observed species could
“borrow strength” from those of common species assuming that they do not behave
fundamentally differently (Ovaskainen and Soininen 2011). Moreover, it is possible
to account for functional traits and/or phylogeny by including them in µ and/or V
(e.g. see Chapter 6 of Ovaskainen and Abrego 2020 for detailed description).

7.3. Dimension reduction with latent factors

The model described above suffers from the “curse of dimensionality”, since the
covariance matrix scales quadratically with the number of species. Indeed, the number
of free parameters of the covariance matrix when modeling S species is S(S + 1)/2.
For example, for S = 100 species, the number of parameters of the covariance matrix
is more than 5,000. Nowadays, dealing with large datasets that contain observational
data over space and time, the number of modeled species can easily exceed several
thousands, making inference challenging and endless computational times. Hence,
there is a need for dimension reduction approaches in JSDMs.

To address this challenge, several authors proposed a low-rank approximation of
the covariance matrix of JSDMs through the use of latent factors (Warton et al. 2015).
Starting from the original model [7.2], we assume a factorized representation of the
residual random effects ens, as a product of factor loadings and latent factors:

ens = t(Ts)Zn where Zn
iid∼ NK(0, IK) [7.5]

The vector Ts ∈ RK is called the factor loading of species s; the collection of
t(Ts), s = 1, . . . , S, constitutes the rows of the so-called factor loadings matrix
T (of dimension S × K). The Gaussian random vectors Zn ∈ RK are called latent
factors. Crucially, note that under this factorized representation of the residual random
effect, the residual covariance becomes now: Σ = Tt(T). By taking the number of
latent factors K , S, the parameters to be modeled are drastically reduced.
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Latent factors Zn can be seen as a set of unmeasured covariates at site n, and the
factor loadings Ts as the response of species s to these unmeasured covariates. A
common (or opposite) response to these unmeasured covariates introduces a positive
(or negative) correlation between species.

A critical feature of this dimension reduction is to appropriately select the number
of latent factors. On the one hand, we need K , S to reduce model complexity. On
the other hand, we have to provide to the model the flexibility (that increases with a
higher K) that is necessary to fully capture the required information from the data.

The number of factors controls the complexity of the model. The challenge is to
find the appropriate number of factors such that the model is simple and tractable, yet
appropriately capturing the covariance structure. Interestingly, this question arises
also in most multivariate analyses where an optimal number of components has to be
chosen. There are several approaches to address this issue in a Bayesian framework.
One way is to initially fix K and then run a model selection with a range of K
values. This is typically done by using information-theoretic criteria such as
the deviance information criterion (DIC; Spiegelhalter et al. 2002) or the
Watanabe–Akaike information criteria (WAIC; Watanabe and Opper 2010).

7.4. Inference

These models could be fitted either in the maximum likelihood framework or in
the Bayesian one. The key difference between the two approaches is that maximum
likelihood methods consider the model parameters as fixed (but unknown) quantities,
while in the Bayesian approach they are considered as random (Ellison 2004). As a
result, the Bayesian framework allows the introduction of a prior information on the
parameters that might come from expert knowledge or previous studies. Bayesian
methods also differ in the quantification of uncertainty: while maximum likelihood
methods usually provide point parameter estimates and confidence interval, the
Bayesian approach can provide the full distribution of the estimated parameters (the
so-called posterior distribution).

Bayesian inference is particularly suitable in ecology due to its flexibility and
computational tractability when dealing with highly complex models. Indeed,
modeling nature is challenging due to the complexity and stochasticity of its
underlying processes. This motivates the use of the Bayesian framework to analyze
ecological data (Clark and Gelfand 2006). Introducing prior information in Bayesian
models allows to incorporate various historical/external information and expert
opinion for improving the models. Additionally, parameter estimations in these
complex models are uncertain, and the Bayesian approaches are particularly suited
for dealing with such an uncertainty.
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As mentioned just above, a Bayesian framework implies to select suitable priors
for model parameters: βs,Σ. Incorporating prior information in the model could
improve parameter estimates, but if priors are specified incorrectly, they could
potentially bias the model, especially when only few observations are available. In
practice, it is quite often difficult to specify correctly prior distributions reflecting
prior knowledge. In this chapter, we present the case of more widespread or
non-informative priors, but informative choices are also possible (Clark et al. 2017;
Bystrova et al. 2021). The prior distribution for regression coefficients is usually a
multivariate normal and an inverse Wishart for the covariance matrix, and all
hyperpriors are chosen to be vague.

7.5. Ecological interpretation of latent factors

We described latent factors from the mathematical point of view, but what do they
imply in term of ecological hypotheses and interpretation? In model [7.3], we
described the residuals ei for site i as a Gaussian vector whose covariance matrix Σ
was unconstrained. This correlation reflects species co-occurrence patterns that are
not explained by the environmental predictors, and may arise from model
mis-specifications, missing covariates or species associations. We can also leverage
on the non-independence between species to improve the co-occurrence and
conditional predictions (see section 7.6). Latent factors not only allow to reduce the
dimension of the model and to deal with a larger number of species, but they also
yield crucial ecological insights.

First of all, this new representation still makes it possible to infer the residual
covariance matrix among taxa: as shown previously, latent factors T factorize the
covariance matrix into Σ = Tt(T). Therefore, species that are highly correlated have
similar latent loadings. How can these latent loadings be interpreted?

In the latent factor representation of JSDMs, it is natural to think as the term
t(Ts)Zn in equation [7.5] as a random effect term of a vector of latent covariates Zn

and their related species-specific coefficients Ts. These latent covariates can be seen
as missing environmental predictors and therefore provide a means of solving the
longstanding problem of missing covariates modeling. In doing so, species with
similar latent loadings share the same response to missing covariate and are thus
expected to share similar occurrence patterns. Therefore, they are more correlated.

Latent factors can also be thought as ordination axes that represent the main axes
of (co)variations of abundances across taxa. By forcing the number of latent factors
to K = 2, it is possible to visualize on a biplot both the sites ordination, due to the
latent variables Zn, and the ordination of taxa, with the latent loadings Ts.
Therefore, species that have close latent loadings will be close in the low dimensional
space represented by the biplot, and therefore highly correlated. By evaluating this
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model-based ordination before and after the inclusion of measured environmental
covariates, we can understand how much the co-occurrence suggested by an
unconstrained model (i.e. without environmental covariates) can be explained by a
shared response to environmental covariates.

7.6. On the interpretation of JSDMs

Although JSDMs are receiving increasing attention, there has been a lack of
clarification on both the ecological processes they incorporate and on their specific
commonalities and advantages with respect to SDMs. Since JSDMs infer a
correlation matrix from the residual, it is tempting to think these residual correlations
can inform about biotic interactions (Pollock et al. 2014) or even that JSDMs
“account for biotic interactions in species distribution models” (Wilkinson et al.
2019). As highlighted by Poggiato et al. (2021), these tempting ideas should be
avoided. JSDMs can provide additional information on species co-occurrences, but
cannot separate the biotic and the abiotic effects, and their predictions on species
distribution inevitably coincide with those of SDMs. However, JSDMs have the great
advantage of leveraging on the residual correlation matrix to provide conditional
predictions, which can be of great help in empirical studies, as we show in the case
study below.

7.7. Case study

7.7.1. Introduction of the dataset

We present hereafter an application of latent factor models to a plant community
dataset recently published by Martinez-Almoyna et al. (2020). The data are being
collected within ORCHAMP, a long-term observatory of mountain ecosystems
aiming to observe, understand and model biodiversity and ecosystem functioning
over space and time. ORCHAMP is built around multiple elevational gradients that
range from about 900 to 3000 m, and have been chosen to have a homogeneous
exposure and slope along the gradient, a typical vegetation for the elevation levels
(with woods dominating the lower parts and alpine meadows the higher parts), so that
all the gradients as a whole are representative of the environmental and topographical
variability of the French Alps. Between 2016 and 2018, at least five sampling plots
were installed along 18 gradients, with an average of 200 m elevation difference, for
a total of 99 plots (Figure 7.2). Here, we study the response of plant species to
climate, the physicochemistry properties and the microbial activities of the soil. We
applied latent factor models to a selection of 44 plant species, whose occurrences
were recorded in at least 20 sites over the 99 sites, together with climatic variables,
soil physicochemical properties and exoenzymatic activities. Latent factor models are
particularly suitable to study the response of plant communities for the reasons
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described above. We aim to understand which species share the same response to the
environment, and how eventual changes of climate and soil could affect these plants.
Moreover, we are interested in the inference of the residuals correlation among
species, the correlation matrix Σ that is given by Λt(Λ). Because of the latent factor
representation, we will be able not only to infer the residual associations among
species, but also to represent species and sites on ordination axes, after filtering from
the environment.

Figure 7.2. Localization and names of the 18 gradients of ORCHAMP. For
a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

Using this dataset, Martinez-Almoyna et al. (2020) highlighted how Growing
Degree Days (GDD, the annual sum of average daily degrees above zero), the total
potential exoenzymatic activity (total EEA, the sum of all measured exoenzyme
activities), soil pH and the ratio between soil carbon and nitrogen (soil C/N)
determine the distributions of the 44 plant species. We therefore chose to include
these four variables as the covariates of the latent factor model. In line with
(Martinez-Almoyna et al. 2020), we considered the square of the GDD, due to the
unimodal response of species to this variable.
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7.7.2. R package used

To analyze the dataset, we used the R package Hmsc (Tikhonov et al. 2019,
2020). This package makes inference on the parameters of the models by sampling
from the posterior distribution through Markov chain Monte Carlo (MCMC)
sampling. Hmsc implements the latent factors methodology of Bhattacharya and
Dunson (2011), where the number of latent factors is automatically chosen via
shrinkage. Although we shall not describe all the features of this package, let us
mention the interesting feature that it allows hierarchical modeling of the regression
coefficients, and allows both functional traits and phylogeny to be included. This feat
enables the user to study the dependence between functional traits and the
environment, and to quantify the importance of phylogeny on species distribution.
Moreover, it allows an explicit spatial and temporal dependence between sites to be
included, improving the performance of the model. Here, however, we do not include
any of these features to strictly describe the application of latent factor models1.

7.7.3. Implementation and convergence diagnosis

We run two MCMC chains of 1,500 samples each, with 500 burn-in iterations and
no thinning. These models are usually computationally demanding, and the
computations for this model notably took around 3 h. Figure 7.3 shows that all the
models clearly converged. The effective sample size (ESS) of the chains is very high
for most parameters, and the potential scale reduction factor (psrf) was always close
to one (the description of these measures can be found in Gelman et al. 2013).
Thanks to the Bayesian framework, the full posterior distribution of the parameters
was available and could then be used to compute a point estimate (posterior mean)
and credible intervals (through posterior quantiles) for all parameters.

7.7.4. Results and discussion

We evaluated the predictive performance of the model both in in-sample
prediction and in cross-validation (due to the high computational costs, we performed
a twofold cross-validation only). We evaluated the model on these tasks by
calculating, for each species, the true skill statistic (TSS), which has the advantage to
account both for the model sensitivity (i.e. proportion of observed presences
predicted as presences) and specificity (i.e. the proportion of observed absences
predicted as absences; (Allouche et al. 2006)). TSS can vary from −1 to 1, where +1
indicates perfect fit and values of zero or less indicate a performance no better or
worse than random (Allouche et al. 2006). Since the TSS requires a threshold to

1 The R code can be found at https://oliviergimenez.github.io/code_livre_variables_cachees/
bystrova.html.
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transform species’ probability of presence into binary presence–absence data, we
selected the threshold that maximizes the TSS values. We also evaluated the root
mean square error (RMSE) of each species. In general, the model has good abilities
to fit the data (mean in-sample TSS is equal to 0.63, Figure 7.4), but a scarcer ability
to generalize on new data (in cross-validation the mean TSS drops by 0.5 and RMSE
increases by 0.25). Model performances vary across species, with some species that
were poorly modeled (three species had a cross-validation TSS score equal to 0) and
others whose distribution was very explained (cross-validation TSS over 0.3).
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Figure 7.3. Effective sample size (ESS, top panels) and potential scale reduction factor
(psrf, bottom panels) for the correlation matrix Σ (Sigma, left panels) and the regression
coefficient β (B, right panels). For a color version of this figure, see www.iste.co.uk/
peyrard/ecology.zip
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Figure 7.4. Distribution of TSS and RMSE score across species for in-sample
prediction (red) and twofold cross-validation (blue). For a color version of

this figure, see www.iste.co.uk/peyrard/ecology.zip

The regression coefficients tell us how species respond to the environment, and in
this example, their heterogeneity shows how plant species have different responses to
the environment (Figure 7.5). In general, climate (represented by GDD) has a
significant effect on the distribution of a few number of species only. Instead, soil
properties had a higher explanatory power. Many species notably show a trade-off
along the gradients of soil characteristics: species that have a positive response to soil
C/N, often have a negative one to soil pH and/or total EEA and vice versa (Figure
7.5). These results are consistent with Martinez-Almoyna et al. (2020), where the
authors, who also considered functional traits but not residual correlation, showed
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how such a behavior reflects the functional trade-offs between conservatives and
exploitative species. Exploitative plants are advantaged in nutrient-rich places with
mild climate, while conservative species succeed in places where soil conditions are
harsh because their adaptations allow them to survive in stressful situations. As a
concluding remark, note that some species do not respond significantly to any of the
environmental covariates, and these are the same species for which the TSS and
RMSE scores are particularly poor. By analyzing the residual correlation matrix, we
can understand species co-occurrence patterns that are not described by the
environment, and provide insights about the phenomena that generate them. In the
residual correlation matrix of this case study, the species are, interestingly, divided
into two groups. Most plants tend to be positively correlated with species belonging
to the same group, but negatively correlated with those of the other group (Figure
7.6). One group (that contains most of the species) is characterized by herbaceous
plants that characterize alpine meadows (e.g. Festuca violacea, Sesleria caerula,
Carex curvula and Gentiana acaulis), while the other one contains trees (e.g. Picea
Abies), shade-preferring shrubs (e.g. Vaccinium myrtillus and Vaccinium vitis-ideae)
and herbaceous species that are found in forests and humid habitats (e.g.
Melampyrum sylvaticum and Chaerophyllum villarsii).

This residual correlation matrix highlights ecological phenomena that are well
recognized. In fact, along elevational gradients, trees are limited by climatic
conditions that prevent their survival above certain altitudes. As a result, herbaceous
plants that need a high amount of light are excluded from the forests and are only
found in open habitats, whereas other herbaceous plants (and shade-friendly shrubs)
need the shade provided by the trees, and are therefore found in closed and/or humid
habitats. The residual co-occurrence matrix not only endorses the biotic phenomena
we described above, but also suggests to include habitat as an additional covariate,
that might explain some of this residual co-occurrence patterns and improve model
predictions.

Thanks to the latent factor representation, we can try to better understand where
these correlations come from. A natural way of doing this is via ordination, as
explained in section 7.5. We project the species in the space of the first two latent
loadings (the first two columns of T) and the sites in the first two latent factors
thanks to a biplot (Figure 7.7). With such representation, we can think of latent
factors as missing covariates, and represent sites depending on these missing
covariates. Species loadings are therefore the response of species to such missing
covariates. If two species are close on the biplot and far from the origin, they respond
in the same way to these missing covariates, and are thus more correlated. For
example, we see that Picea abies, Melampyrum sylvaticum and Vaccinium myrtillus
tend to respond differently from the other species to these missing variables, and in
fact, as said above, they are negatively correlated with them.
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Figure 7.5. Posterior support values for species regression coefficients. Red if the
bounds of the 90% credible interval are both positive, white if the credible interval
overlaps 0 and blue if both bounds are negative. For a color version of this figure,
see www.iste.co.uk/peyrard/ecology.zip

The type of habitat of the sites is one of the environmental predictors that we have
not included in the study, and that could potentially impact species distribution, and
interestingly some of the species highlighted in the previous biplot (Figure 7.7) tend
to prefer close rather than open habitats compared to other species. We therefore
marked each site as forest (indexed by 1) or grassland (0), re-run the model including
this additional covariate and analyze its updated ordination plot (Figure 7.8). The
above-mentioned species, which tend to behave as outliers when the habitat
information was not include, are now closer to the rest of species. The species pool
now tend to be more evenly distributed in the ordination space, even if some trends
are still remarkable. Notably, we can still see a gradient, with sub-alpine species in
the upper-right corner of the biplot and alpine species in the bottom-left corner. If this
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can this be still partially due to some unmeasured environmental variable, this might
also be due to the influence of species on each others, with Picea Abies that provides
the shade for other species.

Figure 7.6. The residual correlation matrix. Only significant values (i.e. 95% credible
interval do not overlap zero) are shown. For a color version of this figure, see

www.iste.co.uk/peyrard/ecology.zip
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Figure 7.7. Model-based ordination analysis. The two latent variables can be seen as
missing covariates, and the position of species (black triangles) on the plot show the
way species respond to those missing covariates. Species close in the latent variable
species are positively correlated, and vice versa

Finally, we want to build on the information that we assessed in the residual
correlation matrix to improve the predictions of the model. We saw how Picea abies
provides the shade and moisture that allows shrub species like Vaccinium (Vaccinium
myrtillus and Vaccinium vitis-ideae) and shadow-friendly herbaceous species such as
Melampyrum sylvaticum and Chaerophyllum villarsii) to thrive, while at the same
time preventing the survival of herbaceous species that need lots of light, such as
Festuca violacea. To improve our ability to predict one (or more) of the species
described above, we predict the probability of occurrence of species conditionally on
the presence (or absence) of Festuca violacea, a herbaceous plants that characterizes
alpine grasslands. This is very similar to include Festuca violacea as predictor for the
unobserved species. While including the other species as predictors is a doable
option for communities with small number of species, it is not straightforward to do
it if there are tens or hundreds of species. In contrast, conditional prediction can be
made also for a great number of species, without the need to run the model again.
When conditioning on Festuca violacea, the predictive power of the model improves,
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in particular concerning cross-validation predictions, where the mean TSS score
gains 80% (from 0.1 to 0.19) with respect to the non-conditional predictions. This is
particularly true for species that show a particular residual correlation (negative or
positive) with Festuca violacea. Therefore, we focused on Poa Alpina, Campanula
scheuchzeri, Soldanella alpina, Viola calcarata and Euphrasia minima, which, like
Festuca violacea, characterize sub-alpine pastures and are often found together, and
on the tree Picea abies, which as mentioned before takes the light that would allow
the Festuca violacea to survive. For example, we consider an alpine meadow in the
region of Devoluy (south of France), at an altitude of 2,100 m, where all the
above-mentioned herbaceous species are present and Picea abies is absent.
Figure 7.9a shows how cross-validation predictions conditioned by the presence of
Festuca violacea increase the probability of the species that are actually present, and
decrease the one of the tree, which is absent. This leads more generally to a marked
improvement in the cross-validation AUC (Figure 7.9b).

Figure 7.8. Model-based ordination analysis, as above, but when
we include the habitat as an additional covariate of the model
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Figure 7.9. Cross-validation predicted probability of (a) presence and (b) cross-
validation AUC of Poa Alpina, Campanula scheuchzeri, Soldanella alpina, Viola
calcarata, Euphrasia minima and Picea Abies conditionally on Festuca violacea (green)
and unconditionally (yellow). At site Devoluy 2100 all the herbaceous species of above
were present (green box) while Picea abies was absent (red box). For a color version
of this figure, see www.iste.co.uk/peyrard/ecology.zip

7.8. Conclusion

JSDMs have been recently proposed as an extension of SDMs that infers residual
correlations between species, reflecting co-occurrence patterns not explained by the
environmental predictors. These models should be interpreted with care (Poggiato
et al. 2021), but they still provide important insights on community assemblage

Copyright Iste 2022 / File for personal use of Valentin Lauret only



Latent Factor Models 153

processes. In particular, the application of latent factors to JSDMs can provide further
advantages. Indeed, latent factors reduce the dimension of the residual covariance
matrix, and the related computational costs that were one of the strongest limitations
of early JSDMs. Moreover, by measuring the main axes of residual co-variation
between species, they also allow for a residual model based ordination of species and
sites. This is particularly interesting when one aims to study species response to
missing environmental variables, which is naturally measured by latent variables.
Nevertheless, considering latent factors instead of a full residual covariance matrix
can have some drawbacks. First, latent factor models increase their dimension with
the number of sites. As a result, when dealing with many sites and few species, it is
computationally more interesting to model a full residual covariance matrix.
Moreover, it is not possible to sparsify the residual covariance matrix induced by
latent factor models, a feature that has just been proposed as a solution to improve the
interpretability of JSDMs (see Pichler and Hartig 2021) in the case of the full
residual covariance matrix.

JSDMs have been implemented in many R packages, each with its particular
features (see Wilkinson et al. 2019 for a review). In our case study, we chose to work
with Hmsc because of its broad documentation and the large number of options it
includes. Among them, it allows to take into account functional traits and phylogeny,
and easily computes conditional predictions. Hmsc is a complete package, easy to
start working with, but it is computationally heavy. In order to have faster results, we
suggest working with the package proposed by Pichler and Hartig (2021), the
features of which remain quite limited for now.
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8.1. Introduction

The way in which an ecosystem works is essentially dependent on the
interactions between the species making up the system and their environment (abiotic
interactions) and on interactions between these species (biotic interactions). By
characterizing the diversity of these communities, we gain the ability to monitor their
evolution over time, and/or to understand how observed patterns in a community
may vary depending on the environment. From a conservation (or monitoring)
perspective, this approach also offers a means of evaluating the effects of protection
measures and defining targeted actions (Tylianakis et al. 2010; Xiao et al. 2018).

The diversity of ecosystems can be studied at varying levels, from the
microscopic, for example in the case of gut microbiota (Layeghifard et al. 2017), to
the macroscopic, for example communities of trees in forests (Clark et al. 2014). In
both cases, the initial data take the form of presence–absence tables, or a count of
individuals of different species observed in different samples, characterized by
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different environmental properties. In microbiology, metabarcoding data are used to
provide a count of “reads” (sequences), while in forest or marine ecology, individuals
may be counted directly.

Simply looking at the number or variety of species in a community, or even its
Shannon index, is not enough to give us a fine description of these ecosystems. These
summary values do not provide information concerning the way in which species
collectively respond to their environment, or about associations (positive or negative)
between species.

Statistical models have been designed to respond to these limits, focusing on
associations between species and their joint reaction to the environment. In this
context, the presence–absence (Harris 2015; Ovaskainen et al. 2017) or abundance
(Popovic et al. 2018) of all the species in question are modeled jointly. The resulting
models are known as joint species distribution models (JSDM) and are notably
different from species abundance models (SDM: (Elith and Leathwick 2009)), which
consider the influence of the environment on the abundance of a single species. The
application of JSDM to presence–absence data was discussed in Chapter 7; in this
chapter, we shall consider the case of count data.

From a statistical perspective, the joint modeling of abundance data presents a
number of problems due to the very nature of the data, notably the fact that (i) these
data consist of counts and (ii) the observed distribution is often overdispersed
compared to a Poisson distribution, which serves as a reference for count data.
Concerning point (i), note that in the case of continuous data, the normal multivariate
distribution is used, but there is no natural multivariate distribution for count data.
Multivariate models for count data do exist, but these often come with strict
constraints, notably in terms of the sign, with respect to dependency relationships
between species (Inouye et al. 2017).

Given these issues, JSDM modelers have naturally turned toward latent variable
models (Warton et al. 2015), which offer greater flexibility in terms of modeling
dependency. This approach notably enables count data to be used in the same way as
continuous data within the latent variables. Several of these models use a Gaussian
distribution for the latent layer (Ovaskainen et al. 2017; Popovic et al. 2018):
dependencies between species are described by the covariance matrix of the latent
vector associated with each sample. The Poisson log-normal model (PLN: Aitchison
and Ho (1989)) discussed in this chapter falls within this framework. One advantage
of latent model variables lies in the fact that they induce overdispersion by
construction, simply by including an additional random element in the distribution of
observations. Finally, these models make it relatively easy to take account of
environmental effects, that is, abiotic interactions, on the abundance of different
species, by means of regression.
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In this chapter, we shall illustrate the possibilities offered by the PLN model
using marine species count data collected by the PISCO research program (PISCO
Research Consortium 2019b). Coastal marine ecosystems are currently subject to
severe disturbances (overfishing, habitat destruction, pollution, etc.) along with the
effects of climate change, which include both ecological consequences (extreme
temperatures, acidification, invasion of new species) and socioeconomic
consequences (Pan et al. 2013). Developing a clearer understanding of these
ecosystems is key to protecting them and to managing the effects of human activities.
The PISCO research program was launched in 1999, studying marine communities
along the US west coast (PISCO Research Consortium 2019b). The aim of the
program is to develop a better understanding of the causes and consequences of
changes to the ecosystem. Activities include long-term species sampling, aimed at
improving knowledge of species distribution and interactions.

One of the ecosystems featured in the study is the kelp forest (PISCO Research
Consortium 2019a) in the Channel Islands archipelago off the coast of Santa Barbara
(southern California). The creation of a national park around these islands means that
they act as a refuge for marine life (Caselle 2013). For the purposes of this study, we
have chosen to focus on one island, Anacapa (made up of three islets, or “sites” in this
context): the surrounding area is relatively well protected, and the marine environment
here has been monitored since 1999. We shall use the MariNet dataset, extracted from
the PISCO data, to show how the PLN model may be used in response to three types
of questions: evaluating the influence of covariates, such as site or year, on species
abundance; identifying species which react to these covariates in the same way; and
identifying direct interactions between species.

8.2. The Poisson log-normal model

8.2.1. The model

We shall begin by presenting the general Poisson log-normal model, including the
way in which it takes account of both abiotic effects and biotic interactions, alongside
sampling effort.

The multivariate Poisson log-normal (PLN) model, introduced by Aitchison and
Ho (1989), is a latent variable model with the capacity to describe an overdispersed
S-dimensional count vector. Consider a sample of size N created by independent
drawings from such a vector. In the case of the MariNet data, S represents the number
of species, and a sample is defined by four elements, including the site and the year
(see section 8.3). The PLN model links each observation Yn = (Yn1, . . . , YnS) ∈ NS

(1 ≤ n ≤ N ) in the count vector to a latent Gaussian vector Zn ∈ RS , in such a way
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that the coordinates of Yn are drawn independently, conditional on Zn, according to
a Poisson distribution:

latent space Zn ∼ N (µ,Σ),
observation Yns | Zns indep. Yn | Zn ∼ P (exp{Zn}) .

[8.1]

The vector of means µ ∈ RS corresponds to the main effects, while the variance–
covariance matrix Σ describes the dependency structure between the S coordinates
of vector Zn. In the case of abundance data, this is the dependency structure between
species within the collected samples. The dependency structure of the PLN model is
illustrated in Figure 8.1. Figure 8.2 shows a geometric view of the PLN model for a
case involving two species.

Figure 8.1. Illustration of dependency in the PLN model. Random
variables are circled, while parameters are not circled

The PLN distribution is naturally overdispersed compared to a Poisson
distribution, as we might expect in this context of application. If Σ = [σsr]1≤j,k≤S ,
then E(Yns) = eµs+σss/2 and V(Yns) = E(Yns) + (eσss − 1)E(Yns)2 ≥ E(Yns).
Furthermore, the covariance between the observed counts of two species may take
arbitrary signs: Cov(Yns, Ynr) = (eσsr − 1)E(Yns)E(Ynr), and thus Cov(Yns, Ynr)
has the same sign as Cov(Zns, Znr) = σsr.

8.2.1.1. Covariates and offsets
Model [8.1] can be generalized naturally to give a formulation close to that of the

general linear model (i.e. with multiple responses), in which the main effects
correspond to a linear combination of D fixed covariates1 noted xn. In the context of

1 In what follows, the covariate vector xn also includes the intercept.
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this study, it is also natural to include an offset matrix in the model, i.e. a fixed shift
in the regression (known to the modeler) that depends on the sample, and potentially
on the species. This notably makes it possible to model the notion of sampling effort,
as we shall see later. Let on ∈ RS be the offset vector of sample n. Thus, model [8.1]
can be generalized as

Yn | Zn ∼ P (exp{Zn}) , Zn ∼ N (on + t(xn)B,Σ), [8.2]

where B is the D × S matrix of regression coefficients.

Figure 8.2. PLN: geometric view of the model for two species. A) Positions in the
latent space: mean log-abundances. B) Mean counts. C) Mean counts (red) and
observed counts (black). D) Observed counts. For a color version of this figure, see
www.iste.co.uk/peyrard/ecology.zip
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8.2.1.2. Modeling the variance-covariance matrix

The parametrization used to describe the variance–covariance matrix can be
adjusted where necessary, notably in order to reduce the total number of parameters
in the model. According to the most general hypothesis, matrix Σ has S(S + 1)/2
parameters (S variance parameters and S(S − 1)/2 covariate terms). However, the
model designer may choose to describe the variances of species alone, using a
diagonal matrix Σ with only S parameters. In this case, the model is equivalent to S
independent SDMs. In extreme situations2, a single variance parameter may be used
for the whole matrix, such that Σ = σIp. Other types of model for matrix Σ, suitable
for dimension reduction and network inference, will be presented in sections 8.2.3
and 8.2.4.

8.2.1.3. Additional notation

In what follows, all of the data available for the N samples will be represented in
the form of three matrices, in which the nth row is associated with nth sample, with
Y the N × S count matrix, X the N × D covariate matrix and O the N × S offset
matrix.

8.2.2. Inference method

In this section, we shall provide a brief description of ways of estimating the
parameters of the PLN model, and of a number of difficulties typically encountered
in the case of latent variable models.

Inference concerns the estimation of regression parameters B and the variance–
covariance matrix Σ. Let θ = {B,Σ} be the set of parameters of the model.

8.2.2.1. Inference in latent variable models

The PLN model is a latent variable model (or incomplete data model) in
which the maximum likelihood approach to estimation cannot be applied. Indeed, the
log-likelihood of the observed data, that is,

log pθ(Y) = log

∫

Z
pθ(Y,Z)dZ,

is impossible to estimate, due to the integration over the set Z = RS describing the
space of possible values of the latent variable.

2 For example, when a series of PLN models are created using components of a mixture.
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One common solution to this issue is to use the expectation–maximization
algorithm (EM, Dempster et al. 1977) to maximize log-likelihood locally based on
the conditional expectation of the log-likelihood of the complete data, that is,

Eθ [log pθ(Y,Z) | Y] . [8.3]

This approach can be used for estimation in a large number of latent variable
models. Unfortunately, it cannot be used directly in a PLN model as the number of
species S increases: in order to evaluate [8.3], we need to be able to integrate
according to the distribution of each latent vector Zn, conditional on the count vector
Yn. As this distribution does not have a closed form in the context of the PLN model,
other numerical integration schemes or Monte Carlo approaches must be used;
however, these are hard to apply for data concerning more than a few dozen species.

8.2.2.2. Variational approximation

An alternative approach is that of variational approximation, which consists of
finding an approximate distribution for pθ(Zn | Yn) which simplifies the integration.
The variational approach, as presented by Wainwright and Jordan (2008), consists of
minimizing the Kullback–Leibler divergence KL between the actual conditional
distribution and the approximate distribution, selected from a predefined class in
order to simplify the calculation of [8.3]. In the case of PLN models, we propose to
approximate pθ(Zn | Yn) by a multivariate Gaussian distribution denoted as qn,
with mean vector mn and a diagonal variance–covariance matrix Sn = diag(s2n).
The set of variational parameters are collected in the vector ψ = (M,S), where
M = t([t(m1) . . . t(mn)]), S = t([t(s21) . . . t(s

2
n)]).

Using the Kullback–Leibler divergence to measure the quality of the
approximation results in an approximate version of the EM algorithm (or variational
EM), which maximizes a lower bound of the log-likelihood of the observations,
defined by

J(Y;ψ, θ) ! log pθ(Y)−KL [qψ(Z)||pθ(Z | Y)]

= Eqψ [log pθ(Y,Z)]− Eqψ [log qψ(Z)] ,
[8.4]

where Eqψ is the conditional expectation, under the variational distribution qψ . This
approach may be generalized to all of the PLN variants presented in this chapter. The
lower bound of the likelihood is optimized in ψ and θ using a gradient ascent type
approach: specifically, in this case, the CCSA algorithm designed by Svanberg (2002)
and implemented in the C++ nlopt repository (Johnson 2011).
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8.2.3. Dimension reduction

The first variant of the general PLN model presented here is particularly suitable
for cases involving a large number of species, and is notably useful for visualizing
large datasets.

8.2.3.1. Presentation of the model
In the general PLN model, the latent variable is assumed to belong to a latent

space of the same dimension S as the observation space. This property results from
the lack of constraints on the covariance matrix Σ of the law of latent vectors Zn. This
hypothesis may be costly in cases involving a large number of species, and in such
cases, one option is to consider that the Zns belong to a space of intrinsic dimension
K , S. In the context of the PLN model, this can be done by defining the strict
analog of the probabilistic principal component analysis (PCA) proposed by Tipping
and Bishop (1999) in the Gaussian context. This variant is known as the PLNPCA
model (Chiquet et al. 2018).

A first formulation of the PLNPCA model involves taking the matrix Σ to be of
rank K , S. This hypothesis presumes the existence of a matrix T of dimension
S ×K such that

Σ = Tt(T). [8.5]

A more intuitive, alternative version of this formulation relies on the definition of
a vector of latent factors Wn associated with each sample:

latent vector space Wn ∼ N (0K , IK×K),
latent space Zn = µ+TWn

⇒ Zn ∼ N (µ,Tt(T)).
[8.6]

Note that the latent vector Zn is entirely determined by the vector Wn: the
PLNPCA does not, strictly speaking, induce an additional latent layer not present in
the PLN model, defined in equation [8.1]. Just like the PLN model, the PLNPCA is
flexible enough to include covariates, and this is done by modifying the distribution
of latent variables defined in equation [8.2].

The set of parameters for the model is then θ = {B,T}, but note that the model
remains unchanged if we replace T by TO, where O is a rotation matrix of RK . In
other terms, T is only identifiable to a rotation matrix, via the matrix Tt(T), in the
same way as in probabilistic PCA3.

3 In this latter case, the orthogonality of axes and the sorting of axes in order of descending
eigenvalue offers a solution to the non-identifiability problem.
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8.2.3.2. Model inference
The process used to infer the PLNPCA model is the same as that used for the PLN

model, but with two major differences. First, in the case of PLNPCA, the variational
approximation is applied to pθ(Wn | Yn). Vectors mn and sn are thus of size K, not
S. Second, the number K of latent factors is generally unknown, so a model selection
criterion must be used.

In practice, the inference method consists of the following steps: (i) selection of a
maximum number of latent factors (noted Kmax), (ii) estimation of a PLNPCA model
of size K for all values of K between 1 and Kmax and (iii) selection of a value K̂
which maximizes the following penalized likelihood criterion:

BIC(K) = JK(Y;ψ, θ)− S(D +K)

2
,

where JK is the variational likelihood [8.4] calculated for the PLNPCA model with
K factors. This criterion can be modified to correspond to the BIC criterion (Schwarz
1978) by replacing the likelihood with its variational approximation.

8.2.3.3. Using the results of the estimation process
Once the parameters of the model have been estimated, we have an estimator θ̂ of

θ and an estimator ψ̃ of ψ. These are used (i) to calculate the deviance explained by
the model, (ii) to estimate the position of the samples in the latent space and (iii) to
investigate the residual structure, that is, the part not explained by the covariates.

The deviance is calculated using the following formula:

DK̂ =
JK̂(Y, ψ̃, θ̂)− Jmin

Jmax − Jmin
,

where Jmax is the likelihood of the saturated model, obtained by fixing
Zn = log(Yns) in [8.4], and Jmin is the likelihood of the model with 0 factors,
obtained by fixing Zn = on + t(xn)B̂ in the same equation. The position of the
samples in the latent space is given by Z̃n = on + t(xn)B̂ + T̂m̃n. For ease of
visualization, we have chosen to focus on the term T̂m̃n alone. This term
corresponds to the residual structure, that is, what remains after correction for
differences in sampling effort (on) and for the effects of covariates (t(xn)B̂). An
illustration will be given in section 8.3.3.

8.2.4. Inferring networks of interaction

A second variant of the PLN model aims to reconstruct the network of ecological
interactions, notably by distinguishing between statistical associations (correlations)
and direct interactions between species pairs.
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8.2.4.1. PLN as a Gaussian graphical model

The PLN model may be used to gain a clearer understanding of interactions
between the species that make up an ecosystem. The covariance matrix
Σ = [σsr]1≤s,r≤S gives a first indication concerning these relations via the
correlations ρsr = σsr/

√
σssσrr. However, simply analyzing these correlations is

not sufficient to distinguish between direct interactions between species and
associations resulting from indirect links. For example, the abundance of two prey
species that share a predator may be correlated simply as a result of fluctuations in
predator abundance, even if there are no direct interactions between these species.

Graphical models (Lauritzen 1996) provide a general probabilistic framework in
which this distinction can be made. Without going into detail on the subject of
graphical models as a whole, we note that, in the case of Gaussian graphical models
(GGM), the precision matrix Ω = [ωsr]1≤s,r≤S := Σ−1 is associated with the
partial correlations between species ρ̃sr = −ωsr/

√
ωssωrr. In the Gaussian context,

partial correlation is, in fact, a conditional correlation, meaning that ρ̃sr = 0 if and
only if the latent variables Zns and Znr are independent conditional on all other
{Znq}q #=s,r. The ecological interpretation of this property is that nullity of ρ̃sr
indicates that there is no direct interaction between species j and k.

8.2.4.2. Inference

A key aim of inference in ecological networks is thus to distinguish between
indirect and direct associations, generally assumed to be few in number. This
hypothesis implies that matrix Ω will be sparse, that is, contains a majority of zero
terms. Chiquet et al. (2019) propose a version of the PLN model designed for
network inference, which builds on the model described in equations [8.1] and [8.2]
by adding a penalty term to the inference step, with the aim of making matrix Ω
sparse. Put more precisely, the parameters of the model are estimated by maximizing
the function

Jλ(Y;ψ, θ) := J(Y;ψ, θ)− λ
∑

s<r

|ωsr|, [8.7]

where J(Y;ψ, θ) is the lower bound defined in equation [8.4]. The regularization
parameter λ controls the sparsity of the matrix Ω: the higher the value of λ, the fewer
interactions (ω̂sr &= 0) will be inferred. This objective function is convex in both ψ
and θ, meaning that an efficient gradient descent algorithm can be used. The choice of
λ is clearly critical; a value may be determined using a penalized likelihood criterion,
of the BIC or eBIC type (Foygel and Drton 2010), or by re-sampling (e.g. see Liu
et al. 2010).
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8.3. Data analysis: marine species

8.3.1. Description of the data

The data considered here concern the abundance of marine species (fish,
invertebrates, algae, etc.) observed on Anapaca island off the coast of southern
California. The island is made up of three islets; for the purposes of our study, we
shall consider data for the east (AEI) and middle (AMI) sites. Observations will only
be taken into account for years in which the coastline was protected: 1999–2014 (16
years) for AEI and 2003–2014 (12 years) for AMI. For each islet (or site), different
observation regions were defined: east (E), center (CEN) and west (W). Finally, each
region was divided into zones according to distance from the coast: INNER, MID
and OUTER. Four observation protocols were defined, adapted for the species in
question, using transects (a form of virtual underwater “corridor”) at different depths
to observe fish, or quadrats of different dimensions on the sea floor for algae,
invertebrates and certain fish species. Thus, not all protocols were systematically
used in the transects, and certain species were observed using multiple protocols.

Raw data were aggregated by sample, defined as a unique combination of year ×
site × code × zone, in order to produce a count table. In each sample, the abundance
of each species was defined as the total number of occurrences of the species in
question across all transects. The sampling effort (used as the offset in PLN models)
was defined as the number of transects in which a protocol permitting the observation
of the species in question was implemented.

The count table was then filtered, retaining only (i) samples with a strictly
positive observation intensity for at least 80% of species and (ii) species with a mean
abundance greater than 1 and a strictly positive sampling effort in at least 80% of the
remaining samples. After filtering, 66 species (from a total of 195) and 142 samples
(from a total of 169) were retained. This step is necessary to remove null observation
intensities, which cannot be processed numerically, and to reduce the proportion of
null counts in the table (from 76% down to 44%).

The data obtained from this pre-processing of raw species count data are known as
the MariNet data. These data consist of (i) a definition of samples, (ii) the abundance of
each species and (iii) the sampling effort for each sample; we can thus construct three
matrices, Y, X and O. Species are identified by a code in the text; these codes are
shown in Table 8.1 alongside the scientific and common English name of the species.
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Code Scientific name Common name/description
BFRE Brachyistius frenatus Kelp surfperch
EMOR Engraulis mordax Northern anchovy

KGB
Sebastes (atrovirens, carnatus,

chrysomelas, caurinus)
Rockfish

SJAP Scomber japonicus Greenback mackerel

Fish

TSYM Trachurus symmetricus Jack mackerel
ANTSOL Anthopleura sola Green anemone
APLCAL Aplysia californica California brown
BARNAC Barnacle
CYPSPA Cypraea spadicea Chestnut cowrie

DICTYOTALES
Dictyota spp. and Dictyopteris

undulata
LOPCHI Lophogorgia chilensis Red gorgonian

LYTANAAD Lytechinus anamesus White urchin, adult > 2.5 cm
MEGSPP Megastrea spp. Turban snail
MEGUND Megastrea undosum Wavy turban snail
PANINT Panulirus interruptus Spiny lobster

STRFRAAD Strongylocentrotus franciscanus Red urchin, adult > 2.5cm

Invertebrates

STRPURAD Strongylocentrotus purpuratus Purple urchin, adult > 2.5cm
BROWN Colpomenia spp. Brown algae

BUSHY
Gelidium, Pterocladia,

Gastroclonium, Gracilaria,
Condracanthus canaliculatus

Red algae with cylindrical
branches

CYSOSMAD Cystoseira osmundacea
Bladder chain,

adult diameter > 6cm

ENCRED
Encrusting non-coralline red

algae
LAMSPP Laminaria spp.

MACPYR_HF Macrosystis holdfast
MACPYRAD Laminaria spp. Giant kelp, adult height

Algae

PTECALAD Pterygophora californica

Table 8.1. Glossary of species codes, scientific names and common names for
species which, according to the model, interact with one of the

urchin species, STRFRAAD or STRPURAD

8.3.2. Effects due to site and date

We began by using the Poisson log-normal model including the effect of several
covariates, one by one, in order to determine which have the strongest influence.
These covariates include site, observation side, zone and period. The period is
defined as a group of successive years. Initial analysis did not reveal a strong “year”
effect, but when years are grouped into two periods (1999–2001 and after 2001), a
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notable difference emerges. The cutoff point in 2001 was obtained automatically
based on the results of an ascending hierarchical classification (using the Ward
criterion) applied to the dataset. The covariates with the strongest effect were
identified using the BIC model selection criterion (ICL is better-suited to clustering
problems). The BIC was maximized for the model including a site effect and the
model including a period effect. The BIC of the other models was lower than that of
the covariate-free model.

The site effect appears to result from the presence of certain islet-specific species,
as we see from the coefficient values for the two sites in the regression model (see
Figure 8.3). These species include LAMSPP (alga), PTECALAD (alga), MEGSPP
(seasnail) and SJAP (mackerel) for the AEI islet, and TSYM (mackerel) for the AMI
islet.

Figure 8.3. Poisson log-normal model with the “site” covariate. Representation of the
coefficients of each site in the regression model. For a color version of

this figure, see www.iste.co.uk/peyrard/ecology.zip

The period effect may be explained by the fact that, in the first years (1999–2001),
data were collected from the AEI site alone; this site only gained protected status in
1999. The first period may reflect a transition phase in the composition and structure of
the community of species present on the islet, which then stabilized during the second
period.

An estimation of the Poisson log-normal model with the “period” covariate for
AEI samples alone shows that the difference between the two periods results from
a higher incidence of certain species in period 2 (LAMPPS, MEGSPP, TSYM: see
Figure 8.4).

Figure 8.4. Poisson log-normal model with the “period” covariate. Representation of
the coefficients of each site in the regression model, in the case of the AEI site.

For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip
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8.3.3. Dimension reduction

Next, we studied the way the model with dimension reduction behaves when no
covariate, the site covariate alone (identified as being the most influential during the
first stage of our analysis), or all covariates are included. The dimension for each
of these three models was chosen using the BIC criterion. The BIC systematically
selected 19 dimensions (compared to 66 in the full model), although the variance
remained concentrated around the first 5 to 10 axes of the latent space (Figure 8.5,
first line).

Figure 8.5. Dimension reduction for (left to right): a model without covariates; a model
with the site covariate; and a model with all covariates. First line: plot of the eigenvalues
for each dimension. Second line: representation of samples in the first principal plane
(blue: AEI; red: AMI). Third line: representation of species on the correlation circle for
the first two dimensions (the species in blue are site-specific, as explained above). For
a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip
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The addition of the site, followed by the other covariates, reduces their impact on
the structure of communities in the latent space (Figure 8.5, second line), allowing
us to focus on the residual space. Formally, the site effect is still present in the latent
positions Z̃n. In the first model (no covariate), this was integrated into the residual
structure T̂m̃n (and thus visible in the graphics), while in the second and third cases,
it disappeared from the residual structure (and thus from graphical representations),
moving into the corrective term t(xn)B̂ associated with the covariates. This resulted
in a better spacing of species around the correlation circle (Figure 8.5, line 3), notably
reducing the number with a strong association with axis 1.

If dimension reduction is applied to samples from the AEI islet alone, in a model
with the site effect, the period effect identified in our first analysis is once again
apparent; there is a clear difference between samples from period 1 and those from
period 2 in the first principal plane (Figure 8.6).

Figure 8.6. Representation of samples on the AEI islet in the first principal plane.
There is a clear difference between samples from period 1 (red) and samples
from period 2 (blue). For a color version of this figure, see www.iste.co.uk/peyrard/
ecology.zip

8.3.4. Inferring ecological interactions

Our aim now is to identify direct interactions between species using the approach
described in section 8.2.4. The network is obtained by “forcing” the precision matrix
to contain a large number of zero terms; the proportion of zeros (and thus of
connections in the network) is controlled by the parameter λ.
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8.3.4.1. Penalty effect

Figure 8.7 shows the effect of parameter λ on the density (i.e. the proportion of
edges which are present) and fitting of the 16 possible models, obtained by combining
the four covariates: year, site, side and zone. As expected, the network density (left)
and the model fitting (measured by Jλ, defined in [8.7], right) systematically increase
as the regularization parameter λ decreases. The use of a model selection criterion – in
this case, BIC – offers the means of correcting this effect and determining an optimal
value for λ.

Figure 8.7. Effect of parameter λ on edge density (left) and model fitting (right). Black
= model without covariate, red = full model, green = models without the year effect,
blue = models including the year effect. Right: dashed line = lower bound Jλ, solid line
= BIC. Vertical dashed line: optimal value of λ for the “year+site” model. For a color
version of this figure, see www.iste.co.uk/peyrard/ecology.zip

Figure 8.7 illustrates two very different behaviors, according to whether the model
includes the year effect. Models in which the year is included (blue and red curves)
are better fitted and more parsimonious in terms of edges. This observation provides
us with confirmation that the year has a major effect on the abundance of different
species. Finally, the best BIC score (−24, 348.52) is obtained for the model that takes
account of both year and site; this optimum is reached for a value of λ = 0.147.

8.3.4.2. Robustness of edges

The choice of the regularization parameter is clearly critical and has a major
influence on the final network, notably in terms of density (see Figure 8.7, left). The
robustness of the results can be improved by using a re-sampling approach, such as
that put forward by Liu et al. (2010), which consists of fitting the model to a large
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number of sub-samples and assigning a selection frequency to each edge. The results
of this procedure for the model including both year and site are shown in Figure 8.8.

Figure 8.8. Stability of edges selected for the model including the effects of the year
and site covariates. Left: histogram of edge selection frequencies in the sub-samples.
Right: Distribution of these frequencies for edges not selected using the BIC (“0”) and
for edges selected using the same criterion (“1”)

Figure 8.8 (left) shows a clear separation between edges that are almost
systematically selected and edges that are almost never selected. On the right side of
the figure, we see that in our case the distribution of these frequencies is coherent
with the list of edges obtained directly using the BIC. The re-sampling process thus
proves the robustness of the edge selection carried out using BIC.

8.3.4.3. Inferred network

The inferred network (Figure 8.9) is relatively dense (with a density of 0.4); certain
species are linked to many of the other species, corresponding to a complex ecosystem.
The complexity of ecological relationships (predation, parasitism, symbiosis, etc.), the
non-direction of relationships, the fact that not all species are taken into account and
the low number of observations all mean that the network should be analyzed with
precaution (Blanchet et al. 2020), not as a network of real, direct interactions but
rather as a tool to guide reflection in conjunction with present ecological knowledge.

A visualization of the partial correlation matrix (Figure 8.10, with species
classified as fish, invertebrates and algae) is helpful for network analysis purposes.
This matrix is symmetrical as the relationships are not directed. Note that the region
corresponding to interactions between fish and invertebrates or algae contains fewer
relationships with weights greater than 0.1 than the rest of the matrix. The frequency
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is 0.12 for interactions between fish species and 0.04 for interactions between fish x
{invertebrates, algae}. Given that fish feed on invertebrates and algae (although some
species eat other fish), one would expect to observe stronger feeding relationships
between these groups. These interactions may be harder to detect when the
relationship is more complex (diversified food supply, habitat, etc.). The relationship
between MACPYRAD (“giant kelp”, adult) and MACPYR_HF (“giant kelp”,
holdfast) is also interesting: the weighting (a partial correlation of 0.37) is much
higher than any of the others (the next highest weighting, in terms of absolute value,
is 0.28). This is due to the fact that both groups are, in fact, the same species at
different life stages.

Figure 8.9. The selected interaction network: visualization using the PLNmodels packet
in R (the two edge colors represent positive and negative relationships, left) and
histogram of the degrees of nodes in the network (number of interactions for each
species, right). For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

For an ecological study, it may be interesting to analyze the interactions with the
highest weight, the species with the most connections, or other species of interest.
Here, we have chosen to focus on an invasive species of purple urchin
(STRPURAD), which has been colonizing the seabed, to the detriment of an edible
red urchin species (STRFRAAD), and the state of the ecosystem as a whole (Woody
2020). Figure 8.11 shows the identified interactions between the two urchin species:
the level of interaction is clearly high. The positive sign of the partial correlation
associated with the interaction appears hard to explain from an ecological
perspective. As STRPURAD is an invasive species, the increase in the size of this
population should not, a priori, promote an increase in the population of
STRFRAAD. However, actions may have been taken to protect STRFRAAD from
the damage caused by the increasing STRPURAD population. Each urchin species is
in interaction with a similar number of species, with a relatively equal balance of
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algae, invertebrates and fish. In terms of trophic interactions, this corresponds to the
fact that urchins consume algae and are consumed by certain fish species. There are
only five species that interact with both of the urchin species in question. This may
indicate that the two species have relatively different networks of ecological
interactions. Four of these five species are strongly connected to the AEI islet, as
identified in our study of covariate effects; they may play a structuring role with
respect to the community of this site. Finally, note that several of the species in
question are of direct interest for humans: lobsters (PANINT), mackerel (TSYM,
SJAP), anchovies (EMOR), kelp surfperch (BFRE) and rockfish (KGB). This may
explain why biologists have chosen to study the role of urchins in the ecosystem.

Figure 8.10. The selected interaction network: visualization of the partial correlation
matrix. Species are divided into groups: fish (blue), invertebrates (gray) and algae

(red). For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip
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Figure 8.11. Interactions between two sea urchin species: red (STRFRAAD,
Strongylocentrotus franciscanus, left, from piscoweb.org) and purple (STRPURAD,
Strongylocentrotus purpuratus, right, from source piscoweb.org). The round nodes
correspond to fish, square to invertebrates and triangle to algae. Red edges represent
a positive relationship and light blue edges represent a negative relationship. The
thickness of the edges is proportional to the intensity of the relationship. For a color
version of this figure, see www.iste.co.uk/peyrard/ecology.zip

8.4. Discussion

In order to understand how an ecosystem works, we need to understand the
interactions that take place between the species making up this ecosystem. In this
context, effective statistical analyses rely on a joint modeling of the abundance of all
of the species involved. PLN models are flexible and easy to interpret, providing
valuable tools for understanding both environmental effects (abiotic interactions) and
dependency structures between species (biotic interactions). Like most joint species
distribution models (JSDM), the PLN uses a latent layer to model dependencies
between species. Unlike other models presented in this book, the latent variables here
do not represent a biological reality, but act as an auxiliary element in the modeling
process.

Several variants of the PLN model have been presented in this chapter, selected for
their ecological relevance; we have described methods for dimension reduction, site
or sample comparison and network inference. The ease of interpretation inherent in
the PLN facilitates a posteriori comparison of the results of the model with external
data; for example, the response of a given species to its environment (described using
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regression coefficients) can be compared with traits or functional groups of species in
order to understand the rules that govern this response. All of the variants presented
here are implemented in R using the PLNmodels package4. The syntax of this package
is similar to that of most models in R. Other generalizations are being developed at the
time of writing and should be available in the near future. One notable development
involves the introduction of a Gaussian mixture model (McLahan and Peel 2000) into
the latent part of the model [8.1] in order to structure sites as homogeneous groups.

Note that dimension reduction, as presented in section 8.2.3, is particularly
helpful in cases involving a large number of species S. This forms a counterpart to
the SCGLR method presented in Chapter 9 for cases involving a high number of
covariates D: the aim of SGCLR is to automatically display a smaller number of
explanatory components, defined as combinations of original covariates. As we saw
in section 8.2.2, the inference method used here relies on a variational approximation,
which increases computational efficiency but does not allow us to calculate measures
of uncertainty (standard deviation, confidence interval) for parameter estimations, or
to define significance tests. Further work is currently ongoing in these areas.

The PLN model offers a means of taking account of differences in sampling effort
across sites, samples or species, an essential consideration in avoiding bias and
guaranteeing the relevance of results. In many cases, no direct measure of this effort
is available, meaning that only estimations (e.g. the total number of observed
individuals) can be used. The quality of these estimations has an obvious influence
on the quality of the study’s results.
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9.1. Introduction

Changes at a global level have resulted in the modification of ecosystems and
their operations. Direct results include species extinctions and changes to the flora,
fauna and functional nature of ecosystems, while indirect results include changes to
the services which these systems render. Understanding and predicting the impact of
these changes in terms of the distribution of species is crucial in order to promote
sustainable management strategies. Mathematical and statistical modeling tools are
increasingly widely used to quantify and test the effect of changes on biodiversity and
ecosystemic services.

Generalized linear models (GLMs; Nelder and Wedderburn 1972) are a classic
solution, offering an elegant mathematical framework for understanding a wide
variety of real-world situations. These models draw on the exponential family of
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distributions, which includes well-known examples such as the Gaussian, Poisson,
Bernoulli and multinomial distributions. A link function connects the expectation of
the variable of interest with a set of explanatory variables (McCullagh and Nelder
1989). The choice of this function introduces a high degree of flexibility, meaning
that many different ecosystem characteristics can be modeled in this way. Examples
include wood density, biomass, carbon, deciduousness, or the abundance and
presence or absence of a species. This methodological framework forms one of the
bases for species distribution models (SDMs; Guisan and Zimmermann 2000; Elith
and Leathwick 2009). The extension of SDMs to multivariate cases is the object of
much current study in statistical ecology, as evidenced by the development of joint
species distribution models (JSDMs; Warton et al. 2015). They are built on
multivariate probit models (Pollock 2014; Wilkinson et al. 2019), in the case of
presence–absence data, or on multivariate Poisson log-normal (PLN) models for
abundance data (Aïtchison and Ho 1989; Chib and Winkelmann 2001, see Chapters 7
and 8). Recent studies into JSDMs have focused on modeling probabilistic
dependency structures between species (Warton et al. 2015; Wilkinson et al. 2019);
few, however, have attempted to model inter-species connections by searching for
shared explanatory factors. Research in this area is particularly critical due to the
large number of predictors that may be encountered in any given situation, a number
which may even exceed the number of observations. Redundancies between
predictors can lead to over-adjustment phenomena and/or to the emergence of
singularities in the estimation process, resulting in unstable estimations and
predictions.

A classic approach to managing instability problems in the univariate case consists
in reducing the number of explanatory variables using model selection procedures
based on information criteria (Hastie et al. 2001). However, these approaches lead to
optimization problems, becoming increasingly hard as the dimension (i.e. the number
of explanatory variables) increases (Fan and Li 2006). Alternative strategies include
regularization by penalization or methods based on component construction.

Penalty-based approaches aim to maximize the likelihood, penalized by a certain
function of the regression coefficients vector (Bickel et al. 2006). In the case of ridge
regression (Hoerl and Kennard 1970), the penalization function is proportional to the
norm L2 of the coefficient vector, while least absolute shrinkage and selection
operator (LASSO) regression uses norm L1(Tibshirani 1996). LASSO regression is
particularly suitable in cases where the “true” vector of the regression coefficients is
hollow (i.e. contains a large number of zeros). This method is mainly used for
variable selection purposes. Unfortunately, it is not an efficient means of selecting
groups of variables, and it is not guaranteed to be optimal in high-dimension cases
(Fan and Li 2001). A variety of extensions and alternatives have been developed to
cope with these problems. One example is the elastic net (Zou and Hastie 2005),
which combines norms L1 and L2, so as to combine the benefits of both ridge and
LASSO regressions; another example is Smoothly Clipped Absolute Deviation
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(SCAD; Fan and Li 2001, 2006; Fan and Lv 2010) penalization, which is suitable for
use with high dimension.

The second type of regularization method involves replacing the initial
explanatory variables with a small number of linear combinations of these variables,
called “components”, in order to summarize the information contained in the
explanatory variables providing the best prediction of responses. This approach is
based on the idea that unknown and non-observed components are “better” regressors
than the initial variables. In this respect, components may be assimilated to
deterministic latent variables. The main advantage of component-based
regularization is that the model is easy to interpret, via the decomposition of a linear
predictor over a small number of interpretable directions of the explanatory set. The
first component-based regression method is principal component regression (PCR;
Kendall 1957; Jolliffe 1982), where the response is regressed over the components
that reflect the maximum variability of the explanatory variable set. PCR does not
take account of the response when constructing components; for this reason, partial
least squares regression (PLSR; Wold 1966) is often preferred. In this case, the
constructed components maximize their empirical covariance with the response.
However, due to the criterion which must be optimized, PLSR only works with
quantitative responses.

The first component-based regularization approach in the context of the univariate
GLMs (Marx 1996) consists in introducing the PLS mechanism into the iteratively
reweighted least squares (IRLS) estimation algorithm. Supervised component-based
generalized linear regression (SCGLR; Bry et al. 2013) is an extension of the
previous method for multivariate cases. As SCGLR is a PLS-type approach, the
constructed components are built on strong structures within the explanatory
variables, and must also perform well in terms of response prediction. However, the
criterion used to construct components in SCGLR is much more flexible than that
used in PLSR; among other things, it is possible to specify the type of structure with
which components should align in the explanatory sub-space. Both PCR and PLSR
may be seen as special instances of SCGLR.

The broad outlines of SCGLR are presented in section 9.2.1. The main aim of this
approach is to provide a flexible dimension reduction tool, using component
construction, in the context of multivariate GLMs. In section 9.2.2, this method is
extended to the case where explanatory variables are divided into thematic groups. A
further extension of SCGLR, which gives added flexibility with respect to the
independence of observations, is presented in section 9.2.3. In section 9.3, all three
methods are applied to the genus dataset in the SCGLR package, in order to model
and predict the abundance of 15 common species in tropical rainforests in the Congo
basin.
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9.2. Models and methods

9.2.1. Supervised component-based generalized linear regression

Let us consider a multivariate model in which a set of S responses (species)
yn1, . . . , ynS is observed for each individual (site) n ∈ {1, . . . , N}. Let each
response yns be the realization of a random variable Yns the distribution of which
belongs to the exponential family. It is important to note that each response vector
Ys = (Y1s, . . . , YNs)

′ may have its own distribution, meaning that different
measurement processes can be taken into account. This is helpful when observing
multiple species of trees, for example, as some may be measured using a
presence–absence approach while others may be measured in terms of abundance
(implying, for example, a Bernoulli and a Poisson distribution, respectively). Let
Y =

[
y1 | · · · |yS

]
be a matrix of dimension N × S with the S observed response

vectors making up the columns. Let X =
[
x1 | · · · |xJ

]
define a matrix of

dimension N × J , in which xj = (x1j , . . . , xNj)
′ denotes the observation vector of

the jth explanatory variable. In this case, J is presumed to be high, leading to
redundancies between explanatory variables. Similarly, A =

[
a1 | · · · |aR

]
is a

matrix of dimension N × R consisting of R additional explanatory variables with
low redundancy, considered a priori to be important in predicting Y. Unlike J , we
shall presume R to be low. We shall suppose that the variables in X contain only
H < J latent dimensions, which are relevant for modeling and predicting Y; the
marginal effects of the variables in A, on the other hand, must be precisely
quantified. We therefore need to identify and interpret the H latent dimensions of X
by constructing components, while retaining the variables contained in A.

9.2.1.1. The SCGLR approach

SCGLR operates within the statistical framework of generalized linear regression,
formalized as follows:

∀s ∈ {1, . . . , S}, Ys ∼ Fs(ys,ηs)

with ηs = Xβs +Aδs,
[9.1]

where Fs is a distribution of the exponential family and ηs is the linear predictor used
to connect the expectation of Ys to the explanatory variables via a link function. For
example, in the case of presence–absence data, Fs is a Bernoulli distribution and the
link functions used are logit or probit. For count data, Fs is a Poisson distribution and
the link function log is generally used. In SCGLR, for cases with just one component
to identify, the linear predictor is written as:

ηs = Xuγs +Aδs, [9.2]
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where u is a unit vector (i.e. ‖u‖ = 1) of length J to determine. In [9.2], f = Xu
denotes the component to identify, γs the associated regression parameter and δs the
vector of the parameters related to the additional explanatory variables. It is important
to note here that the component f is common to all of the responses Y. It acts as
a deterministic latent variable, taking account of the structural dependency between
responses. Parameters γs and δs, on the other hand, are specific to the response ys

and reflect the effect of the component and of the additional explanatory variables for
the sth response. This way of writing is only slightly different from a simple regression.
It also makes computation more complicated, as estimation can no longer be carried
out directly: the product uγs results in a nonlinearity. However, there are at least two
benefits to this approach. First, it offers a natural means of reducing the dimension of
the problem, increasing the stability of estimations. Second, the construction of u is
flexible and can be adjusted depending on which structures are considered to be most
relevant among the explanatory variables. This flexibility will be discussed in greater
detail in the next paragraph.

9.2.1.2. Notion of structural relevance

Structural relevance can be measured in different ways, depending on the type of
direction the component is intended to reflect (Bry and Verron 2015; Bry et al. 2020).
In this case, we have chosen to use an approach called Variable Powered Inertia (VPI)
(Bry and Verron 2015). If X contains J standardized numerical variables, then this
measure, denoted as φ!, takes the form of a weighted generalized mean of the squared
correlations between explanatory variables xj and the component f . It is defined by

φ!(u) =






J∑

j=1

ωj

[
cor2(f ,xj)

]!





1/!

, [9.3]

where ωj represents the weight of the jth explanatory variable (ωj = 1/J by default)
and where the scalar # " 1 measures the locality (or narrowness) of the desired
bundles, that is, groups of highly inter-correlated variables. Figure 9.1 illustrates the
role of parameter #, showing the behavior of [φ!(u)]

! for different values of # in an
elementary case with four coplanar explanatory variables x1,x2,x3,x4. The higher
the value of #, the more local, and numerous, the bundles will be.

Note that the VPI measure can be used for qualitative explanatory variables, and is
one specific instance of a highly flexible family of structural relevance measures. For
more details, see Bry and Verron (2015).
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Figure 9.1. Polar representation of VPI (equation 9.3) by values of # for four coplanar
explanatory variables x1,x2,x3,x4. Vector u is identified with the complex number eiθ,
where θ ∈ [0, 2π[. The curves z#(θ) =

[
φ#

(
eiθ

)]#
eiθ are shown for , ∈ {1, 2, 4, 10, 50},

such that the intersection between the curve z# and the component f = Xu has a
radius equal to

[
φ#

(
eiθ

)]#. The red line shows the only maximum direction for , = 1,
which is the first principal component. The four variables are then considered as a
single bundle. The blue lines show the two maximum directions for , = 4, and in this
case, the variables are seen as two bundles containing two variables each. Finally,
when , = 50, each variable is considered as a bundle in its own right. For a color
version of this figure, see www.iste.co.uk/peyrard/ecology.zip

9.2.1.3. Estimation method for a single-component model
Taking account of only relevant structures in X when constructing u offers no

guarantee that the vector obtained in this manner will provide the best prediction of
responses. The SCGLR approach aims to identify the vector u which gives the best
possible trade-off between structural relevance φ! and the goodness of fit of the
generalized linear model. The problem may thus be expressed as a maximization of
the criterion

C(u,γ, δ) = λ log [φ!(u)] + (1− λ) log [L(Y,u,γ, δ)] [9.4]

under the constraint ‖u‖ = 1, where L(Y,u,γ, δ) is the likelihood of the generalized
linear model and thus provides information concerning fit quality. Parameter λ is used
to weight the influence of each term in the overall criterion to maximize. If λ = 0, the
procedure is simply a maximization of the log-likelihood. If λ = 1, by contrast, the
algorithm will seek the direction which maximizes φ!. In [9.4], the log-likelihood of
the model is written as:

S∑

s=1

log [Ls(ys,u, γs, δs)] ,
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where Ls(ys,u, γs, δs) is the likelihood of the model associated with the response ys.
Again, this way of writing highlights the facts that (i) distributions may differ from
one response variable to the next, (ii) the relevant direction u is shared by all of the
response variables, (iii) the effect of components is variable specific and (iv) the Ys

are presumed to be independent conditional on X .

The [9.4] criterion is maximized using an iterative approach. Given vector u, the
regression parameters γs and δs are estimated using the Fisher scoring algorithm
(FSA; Lange 2012), replacing X with Xu. Given the regression parameters, the
construction of vector u is obtained using the projected iterated normalized gradient
(PING; Bry et al. 2020). This algorithm, used to maximize any given function on the
unit sphere, is described in detail in Chauvet (2018).

9.2.1.4. Construction of higher rank components

The case considered thus far involves a single component, f = Xu. In practice,
however, a single direction is often not sufficient to correctly predict all responses,
raising the need for other predictive components. In order to avoid redundancy
phenomena, an approach ensuring that additional components are orthogonal to
existing components will be used. Let F h =

[
f1 | · · · |fh

]
be the matrix

containing the first h constructed components and Ãh =
[
A |F h

]
the matrix of

additional variables incremented by F h. Component fh+1 = Xuh+1 is then
obtained by maximizing the criterion

C
(
u,γ, δ̃h

)
= λ log [φ!(u)] + (1− λ) log

[
L
(
Y,u,γ, δ̃h

)]
,

where δ̃h are the parameters associated with the matrix Ãh, under the constraints
‖u‖ = 1 and fh+1 ⊥ F h. The final choice of the number of components is made via
cross-validation. For details, see Bry et al. (2013, 2020); Chauvet (2018).

9.2.2. Thematic supervised component-based generalized linear
regression (THEME-SCGLR)

Let us return to the case described in section 9.2.1, but this time, let the matrix X
be decomposed a priori into T conceptually homogeneous thematic groups:

X =
[
X1 | · · · |XT

]
.

For example, if we wish to model and predict the abundance of tree species, two
distinct groups of explanatory variables may be used: one with variables related to
environmental conditions (pluviometry, geology, etc.) and one corresponding to the
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photosynthetic characteristics of the population (which may be summarized using
EVI, MIR and NIR indices, obtained via teledetection). This distinction is helpful in
distinguishing between the effects of different types (thematic groups) of explanatory
variables on responses.

9.2.2.1. One component per thematic group
Each thematic group Xt (t = 1, . . . , T ) is presumed to contain a large number Jt

of variables that must be synthesized using a small number Ht < Jt of relevant latent
dimensions. As in the case of SCGLR, a generalized linear regression (described by
9.1) is implemented, using linear predictors that correspond to a decomposition of
X into thematic groups. In cases where only one component is constructed for each
thematic group, these are written as:

ηs =
T∑

t=1

Xtutγts +Aδs, s = 1, . . . , S,

where f t = Xtut denotes the component associated with thematic group t and γts is
the regression parameter of the response s on this component. The THEME-SCGLR
method then consists in constructing vectors u1, . . . ,uT , which maximize a trade-off
between the product of the structural relevances in the groups and the overall goodness
of fit of the model. This may be expressed as a maximization of the criterion

C(u1, . . . ,uT ,γ1, . . . ,γT , δ) =

λ
T∑

t=1

log [φ!(ut)] + (1− λ) log
[
L(Y,u1, . . . ,uT ,γ1, . . . ,γT , δ)

]
[9.5]

under the constraints ‖ut‖ = 1 (t = 1, . . . , T ), where L denotes the likelihood of the
generalized linear model and γt = (γt1, . . . , γtS)

′ corresponds to the vector of the
regression coefficients associated with the thematic group t. Criterion 9.5 can be
maximized iteratively, applying the SCGLR approach described in section 9.2.1
sequentially for each thematic group. For a given thematic group t, the criterion to
maximize in iteration i is written as:

C ′(u[i]
t ,γ[i]

t , δ̃
[i])

= λ log
[
φ!
(
u[i]
t

)]
+ (1− λ) log

[
L
(
Y,u[i]

t ,γ[i]
t , δ̃

[i])]
,

where δ̃
[i]

is the vector of parameters associated with the matrix Ã
[i]

made up of
additional variables incremented by the components in their current state. More
precisely, over the course of successive updates from the 1st to the T th group, for
iteration i and group t, the matrix

Ã
[i]

=
[
A |f [i]

1 | · · · |f [i]
t−1 |f

[i−1]
t+1 | · · · |f [i−1]

T

]

is used.
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9.2.2.2. Multiple components per thematic group
As we saw in section 9.2.1, and even with several thematic groups, the use of just

one component per group may not be sufficient to fully reflect the complexity of
observed processes. The search for successive components in groups is based on the
same strategy used in SCGLR, with an added constraint of orthogonality between
components of the same group, and with iterative modifications to the matrix of
additional explanatory variables. However, in the case of multiple thematic groups,
the use of cross-validation to select an optimal number of components is more
difficult. In order to be exhaustive, the selection process would need to include
comparisons of all models, crossing all possible numbers of components in each
group. The cost of this combinatorial problem rapidly becomes unfeasibly high. The
proposed alternative in this case is the backward (“pruning”) method. Starting with a
large number of components in each thematic group, the least informative
components are successively removed. It is important to note that this approach
remains dependent on cross-validation, and that the parameters associated with
components are updated each time a component is “pruned”.

9.2.3. Mixed SCGLR

9.2.3.1. Beyond independence
Both SCGLR (section 9.2.1) and its thematic variant THEME-SCGLR (section

9.2.2) rely on a strong hypothesis, that of independent observations. However, in
certain real-world situations, observations are not independent, but structured into a
number of distinct groups (or clusters), in which observations are a priori dependent.
The need for increased flexibility with respect to the independence of observations
led to the development of the mixed-SCGLR method (Chauvet 2018; Chauvet et al.
2019), in which the dependency of observations within each group is modeled by a
random effect. This method enables a distinction to be made between the part of
variability due to fixed effects and that resulting from the dependency structure of the
observations. It extends the SCGLR approach to multivariate generalized linear
mixed models (GLMMs; Bolker et al. 2009) and offers the possibility of finer
interpretation of models.

9.2.3.2. Presentation of the model
Once again, let us take the same situation as in section 9.2.1, with the exception

that the N observations are no longer presumed independent, but form G distinct
groups within which observations are a priori dependent. The effect of this
dependency structure is presumed different for each response. Thus, for each
response ys, a random effect ξs with G levels is used to model the dependency of
observations in each group. These random effects are taken to be independent and
normally distributed:

∀s ∈ {1, . . . , S} , ξs
ind.∼ NG (0,Ds) , [9.6]
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where Ds = σ2
sIG, with σ2

s the variance of the random “group” effect associated
with the response ys. Conditional on ξs, the response vector ys is considered to be the
realization of a random vector Ys with a distribution Fs belonging to the exponential
family. We thus have

∀s ∈ {1, . . . , S} , Ys | ξs
ind.∼ Fs

(
ys,η

ξ
s

)
, [9.7]

where the linear predictor ηξ
s, in the case of a single component model, is written as

ηξ
s = (Xu) γs +Aδs + Zξs. [9.8]

In expression [9.8], the matrix Z of dimension N × G is the design matrix for
random effects, in which an element zn,g is equal to 1 if the observation n belongs to
group g and 0 otherwise. The way the linear predictor [9.8] is written clearly shows
the way in which different dependency structures within the data can be taken into
account. Component f = Xu, which is common to all responses, is still interpreted
as a deterministic latent variable, showing a structural dependency between
responses. The random effects ξ1, . . . , ξS are different, as they model the
dependency of observations within each group. They may thus be interpreted as
stochastic latent variables, capturing the portion of data variability, which can be
ascribed to the presence of grouped data. Unlike the component, the random effects
are response dependent, as the effect of the inter-observation dependency structure
may differ between responses.

9.2.3.3. Estimation method

An adaptation of Schall’s algorithm (Schall 1991) can be used to estimate the
model described by [9.6]–[9.8]. This is an iterative procedure, alternating between
linearization of the model conditional on the random effects and estimation of
parameters, using methods based on mixed linear models.

1) Linearization of the model: for each s ∈ {1, . . . , S}, this step consists in
defining the linearized model

Mξ
s :

∣∣∣∣∣
zξ
s = (Xu) γs +Aδs + Zξs + es,

with: E (es | ξs) = 0 and V (es | ξs) = Wξ
s,

where zξ
s and Wξ

s respectively denote the pseudo-response and the variance–
covariance matrix, as defined by Schall.

2) Construction of the component and estimation of parameters: just as in the
SCGLR approach (section 9.2.1), the component f = Xu is constructed by
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maximizing a trade-off between structural relevance and goodness of fit. In this case,
the trade-off is written as

C(u,γ, δ) = λ log [φ!(u)] + (1− λ)
q∑

k=1

log
[
Ls

(
zξ
s,u, γs, δs | ξs

)]
,

where the structural relevance φ! is given by [9.3] and where Ls

(
zξ
s,u, γs, δs | ξs

)

denotes the likelihood of the model Mξ
s. Once component f has been constructed,

Schall’s method (Schall 1991) is applied using the linear predictors given by [9.8].
The new values of the regression parameters γs and δs, predictions ξs and variance
parameters σ2

s are obtained using Henderson’s method (Henderson 1975).

Steps 1 and 2 are repeated until component f and estimates of γs, δs,σ2
s stabilize

for all s ∈ {1, . . . , S}. The mixed-SCGLR method can also be extended to find H " 2
components by adding extra orthogonality constraints. Details of this extension are
presented by Chauvet (2018) and Chauvet et al. (2019).

9.3. Case study: predicting the abundance of 15 common tree species
in the forests of Central Africa

In this section, we shall illustrate the SCGLR approach using the genus dataset
(taken from the SCGLR package, available from https://github.com/SCnext), which
describes the abundance of 15 common tree species in the Congo Basin and 46
geo-referenced explanatory variables. Each of the 1,000 observed individuals in the
dataset is a 5 km by 5 km plot, and each plot is the result of an aggregation of a
varying number of sub-plots of 0.5 ha. For each plot, there are 21 variables
describing the physical characteristics of the environment: altitude, pluviometry,
hydric condition of the soil and geology. Geology is a categorical variable with five
levels. Vegetation is characterized by 25 indices of photosynthetic activity, obtained
by teledetection (using EVI (Enhanced Vegetation Index), MIR (Middle InfraRed) and
NIR (Near-InfraRed)). As the sampled surface is not the same from one parcel to the
next, surface will be used as a scale parameter (offset) in the model. Finally, spatial
coordinates (longitude, latitude) and information related to the forestry concession is
also included in the dataset. For reasons of confidentiality, the tree species are
denoted as gens, s = 1, . . . , 15.

9.3.1. The SCGLR method: a direct approach

As a starting point, we shall consider that the matrix X contains all of the
explanatory variables with the exception of geology, used as an additional
explanatory variable. The abundance data are considered to follow a Poisson
distribution, and the canonical link function (log) is used. The choice of the number
of components and the tuning parameters (λ and #) are obtained by five-block
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cross-validation. The maximum number of components is fixed at 10. Figure 9.2
shows the geometric mean of the mean errors. We see that the optimal choice
corresponds to H = 7,λ = 0.15 and # = 4. In this example, the differences resulting
from the use of different values of λ and # are not particularly strong. However, we
know from experience that these parameters can have a significant influence on the
selection of the number of components, and thus on their interpretation. Furthermore,
note that, in this case, the component-free model (H = 0) only contains the
additional variable (geology).

Figure 9.2. Geometric mean of the square mean quadratic prediction errors over
responses as a function of the number of components and for different values of λ
and #. The red dot corresponds to the optimal configuration (H = 7, λ = 0.15 and
, = 4). For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

Using the same principle as ACP, Figure 9.3 shows the correlation circles over the
planes spanned by the first three components. Variables and linear predictors are only
shown for species that are well represented in these planes (correlations greater than
0.8). The first component accounts for 34% of the inertia of the explanatory variables
X , and is principally structured by the opposition between two contrasting climatic
zones: the north, with low rainfall during the dry season (unimodal pluviometry), and
the south, where rainfall is more regular over the course of the year. The second axis
differentiates between forests with high photosynthetic activity during the dry season
and forests with high photosynthetic activity during the rainy season. Axis 3
corresponds to the opposition between highly or weakly partitioned landscapes,
structured by the altitude variable. Graphic representations of the correlation circles
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make the components easy to interpret. Representing linear predictors on factorial
planes (red arrows in Figures 9.3a, 9.3b and 9.3c) also assists in understanding the
links between environmental characteristics and the abundance of species.

(a) Component plane (1,2) (b) Component plane (1,3)

(c) Component plane (2,3)

Figure 9.3. Circles of correlations resulting from the first three components. For a
color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

Finally, components can also be visualized in space by representing components
as a function of spatial coordinates; this makes it easier to understand how bundles are
structured across the space (see Figure 9.4).
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(a) First component (b) Second component

(c) Third component

Figure 9.4. Spatial representation of the first three components. For a color
version of this figure, see www.iste.co.uk/peyrard/ecology.zip

9.3.2. THEME-SCGLR: improved characterization of predictive
components

The initial version of SCGLR, in which component vectors are calculated based
on all of the explanatory variables in matrix X , was presented in section 9.3.1.
However, these variables may be very different in thematic terms: in our example,
matrix X includes both bio-physical variables (pluviometry, temperature) and
variables that characterize photosynthetic activity (EVI). The variables represent
distinct biological phenomena, and the construction of components combining the
two realities can result in interpretation problems. For example, computing the
squared correlations (ρ2) between the first component and the explanatory variables,
we see that certain hydric conditions present a very clear correlation to this
component (Figure 9.3a). Nevertheless, variables EVI_21 and EVI_22 also play a
significant role in the definition of this component (ρ2 = 0.52 and 0.58,
respectively). The first extension to SCGLR, presented in section 9.2.2, allows
components to be constructed within thematic sub-sets of explanatory variables,
highlighting the respective role of each theme in species prediction. Here, we
shall consider two sub-sets: one containing variables related to the bio-physical
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environment and a second containing variables that characterize the photosynthetic
activity of the population (EVI). The additional variables remain unchanged. The
“pruning” approach developed for the THEME-SCGLR method allows us to estimate
an “optimal” path between bio-physical variables and those obtained from satellite
imaging (see Figure 9.5).

Figure 9.5. Geometric mean of the square roots of the mean quadratic prediction
errors of responses, as a function of the number of components in each theme.
On the x axis, m_n corresponds to a model with m components for theme 1
(bio-physical environment) and n components for theme 2 (photosynthetic activity).
The optimal model, shown by the red dot, contains five components for theme
1 and two components for theme 2. For a color version of this figure, see
www.iste.co.uk/peyrard/ecology.zip

The optimal number of components here is the same as in our first analysis (7).
However, where the second component, calculated on the basis of all explanatory
variables, was seen to be strongly linked to photosynthetic activity (EVI variables,
see Figure 9.3), the two-group approach shows that these variables are actually of
secondary importance compared to bio-physical characteristics. Figure 9.5 should be
read from right to left. The model is initially fitted for six components per thematic
group, then those components that are least useful for predictive purposes are
progressively removed (backwards method); these least useful components mostly
concern photosynthetic activity.
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9.3.3. Mixed-SCGLR: taking account of the concession effect

The next stage is to take account of the fact that the individual plots in the data
set belong to 22 different forestry concessions. Measures made from within the same
concession will now be considered to be inter-dependent. However, this dependency
relationship is expressed differently depending on the species. Each abundance vector
ys is modeled by a Poisson distribution with a log link:

ys ∼ P
(
exp

[
H∑

h=1

(Xuh) γs,h +Aδs + Zξs

])
,

where ξs is a random effect with 22 levels, modeling the dependency of abundances
ys within concessions. Estimating the variance of these random effects allows us to
identify species for which abundances are more variable between concessions.

The optimal number of components is determined by a five-block cross-validation
procedure, conserving the optimal tuning parameters from the first analysis (λ = 0.15
and # = 4). The cross-validation errors obtained with mixed-SCGLR are shown in
Figure 9.6 alongside those obtained using SCGLR.

Figure 9.6. Geometric mean of the RMSE as a function of the number of
components, with λ = 0.15 and # = 4. For mixed-SCGLR, the optimal value is
H = 3. For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip
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(a) Component plane (1,2) (b) Component plane (1,3)

(c) Component plane (2,3)

Figure 9.7. Factorial planes (1,2), (1,3) and (2,3) obtained using mixed-SCGLR
on the genus dataset, with optimal parameters H = 3, λ = 0.15 and # = 4.
Variables and linear predictors are only shown for species which are sufficiently
well represented (correlations above 0.8). For a color version of this figure, see
www.iste.co.uk/peyrard/ecology.zip

Copyright Iste 2022 / File for personal use of Valentin Lauret only



198 Statistical Models for Hidden Variables in Ecology

Two main points emerge from these results. First, we see that, in mixed-SCGLR,
only three components are used to capture the most essential information contained
in X to model abundances, compared to seven components in standard SCGLR.
Taking account of the fact that plots are grouped into 22 forestry concessions thus
results in a more parsimonious model. Second, the cross-validation errors obtained
using mixed-SCGLR are lower than those obtained using SCGLR. This shows that
the predictive quality of the model is better when the dependence structure of the
plots is taken into account.

Figure 9.7 shows the factorial planes obtained using mixed-SCGLR for the genus
data, with optimal parameters H = 3, λ = 0.15 and # = 4. The first two components
constructed here are very similar to the first two components obtained using SCGLR.
Only the third is different: in this case, it is structured around variable pluvio_10,
whereas in SCGLR, it was structured around altitude.

As we see from Figure 9.6, taking account of the dependency relationship
between measures taken from the same forestry concession improves the predictive
quality of the model. A comparison of the Spearman correlations between observed
abundances and abundances predicted by cross-validation using SCGLR and
mixed-SCGLR (Table 9.1) confirms this finding. The correlations between predicted
and observed values in the case of mixed-SCGLR are always greater than or equal to
those for SCGLR. The mixed-SCGLR method thus gives us a finer prediction of the
abundance of each species.

Species No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SCGLR 0.65 0.64 0.60 0.49 0.39 0.44 0.61 0.63 0.85 0.63 0.62 0.58 0.52 0.73 0.51

Mixed-SCGLR 0.69 0.69 0.61 0.52 0.44 0.46 0.68 0.65 0.87 0.63 0.69 0.60 0.56 0.75 0.56

Table 9.1. Spearman correlations between observed and predicted
abundances obtained by SCGLR and mixed-SCGLR

Finally, note that both SCGLR and mixed-SCGLR can be used to map predicted
abundances. Figure 9.8 shows the abundance values predicted by SCGLR and mixed-
SCGLR for the species with the highest inter-concession variability (species No. 12).
The predictions obtained using the two methods are visually similar, but the quality is
slightly higher using mixed-SCGLR (Spearman correlation of 0.6 compared to 0.58
for SCGLR).
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9.4. Discussion

The SCGLR method was designed with three aims in mind. The first was to
extract the best latent dimensions for modeling a set of responses from a set of
explanatory variables. These dimensions take the form of stable and interpretable
components. The second objective was to obtain a linear predictor for each response,
using these components, which is not over-fitted, particularly in cases involving large
numbers of explanatory variables and where some of these variables are redundant.
The third and final aim was to find a way of simultaneously modeling responses with
different distribution types. These aims were achieved by maximizing a criterion
combining two sub-criteria: the structural relevance of the explanatory components
and the goodness of fit of the model of responses based on these components. The
combination of the two sub-criteria benefits from added flexibility via the use of two
hyper-parameters, λ and #. Parameter λ is such that, at the optimum, λ/(1− λ) is the
elasticity of structural relevance with respect to goodness of fit. Parameter # is used to
direct components toward more or less fine bundles of correlated variables. In the
case of a single response variable, and when λ is equal to 0, the SCGLR method is
simply a generalized linear regression. For # = 1 and when λ = 1, SCGLR
corresponds to a principle component analysis. Altering the values of λ and # offers
the means of exploring a continuum of methods for extracting explanatory
dimensions; the best model in each case is that which minimizes the mean
cross-validation error. Calibrating λ and # is a costly and time-consuming process.
This limitation is significant, and the development of a more efficient calibration
approach is an important goal for future work. Two extensions to the method were
presented in sections 9.2.2 and 9.2.3. The first, THEME-SCGLR, involves thematic
partitioning of explanatory variables; the resulting components, defined by theme, are
conceptually clear and easy to interpret. The second variation, mixed-SCGLR, allows
the use of random effects in the response model, enabling the treatment of grouped
data. Further extensions may be developed in future. One option would be to
consider response distributions, which are less “classic” but often encountered in
real-world situations, such as zero-inflated models. Another option would be to
include an elastic net type penalty in the criterion in order to obtain both
parsimonious components and parsimonious linear predictors. Yet another option
would be to combine SCGLR with classification algorithms in order to group
responses that depend on shared explanatory components. Mixed-SCGLR offers the
means of taking account of certain dependency structures between statistical units,
but the range of possible dependencies goes well beyond those covered here, notably
including more complex relations connected with space and time. Finally, it is
important to note that SCGLR presumes the independence of responses conditional
on the explanatory variables. To create a more realistic multivariate model, this
approach could be extended to include a more sophisticated dependency structure for
responses.
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10.1. Introduction

10.1.1. Ecological background

An ecosystem is a complex entity made up of a large number of interacting,
heterogeneous biological and physical components. Human societies make a living
by using the ecosystems in which they exist, notably via agriculture and forestry.
This combination of a human society and one or more ecosystems on which the
society depends is known as a socio-ecosystem.

The generalization of productivist logic in humanity’s relationship with
ecosystems has led to the erosion of certain components of agricultural and forest
ecosystems (e.g. the level of organic matter in farmland, or the quantity of deadwood
in a forest) and to a decline in biodiversity. This decline raises ethical issues, in terms
of conservation, and reduces the quality and diversity of benefits that humanity can
derive from these ecosystems; thus, the socio-ecosystem itself is becoming
increasingly fragile.
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Before we can identify changes to management and usage practices with the
potential to correct this erosion effect, we need to understand the causality
connections between these practices, the physical characteristics of the milieus in
question and the biodiversity of these sites.

The spatial extent and complex nature of socio-ecosystems make them difficult
to study under controlled conditions. The causality connections between components
can only be interpreted using a comparative approach; in statistical terms, this entails
the identification of quantitative relationships between certain characteristics.

10.1.2. Methodological problem

The data sets used to study relationships between components of
socio-ecosystems often comprise a relatively small quantity of independent
ecosystems (the observations) and a large quantity of data for each of these
ecosystems (the variables). The addition of a new socio-ecosystem implies the
acquisition of a large number of measures of different natures, whereas the addition
of a new variable for socio-ecosystems that are already being monitored is generally
relatively easy, particularly if the data already exist and must simply be recomposed.

The search for relationships within a large group of variables may require multiple
tests to be applied to the same dataset. Without adequate control, the risk for the first
species of each test, taken individually, may be inflated. However, existing control
methods (Holm 1979; Benjamini and Hochberg 1995) have a detrimental effect on
the power of tests, which may already be low due to a small number of observations.
Separate analysis of the various relationships that are expected to exist in the model,
for example using regression models, may thus result in either false positives or too
few detections.

The components of interest in socio-ecosystems, such as biodiversity, exploitation
practices, and so on are inherently complex in nature and can only be studied
indirectly, through the lens of groups of measured variables within a dataset. The
notion of plant biodiversity in a managed forest landscape, for example, is partly
reflected in measures such as the number of plant species observed in a sampling
process, the number of tree species, the number of bryophyte species, and so on.
Causality connections between these components may be analyzed by studying the
relationships present within a reduced number of groups of variables, rather than by
considering a large number of variables individually. Using this grouped structure
may result in improved detection of the relationships between components by
reducing the number of relationships to explore. Furthermore, the level of
redundancy between variables in the same group is likely to reduce error in
characterizing the components of socio-ecosystems, resulting in a clearer view of the
relationships between these components.
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The notion of latent variables may be used to model components in a
socio-ecosystem, as described above. Latent variables offer a means of drawing on
the grouped structure of observed variables in a socio-ecosystem and of avoiding the
methodological problems described earlier. Structural equation models (SEMs) are a
practical implementation of this idea.

10.1.3. Case study: biodiversity in a managed forest

At a global level, forests are home to around two-thirds of terrestrial biodiversity.
Most forests in Europe have long been managed, and this has major implications for
their biodiversity. Following the 1992 Rio Convention, forest managers are now
required to protect species diversity in harvested areas. However, species inventories
and taxonomic expertise come at a cost, and cannot be carried out on a regular basis
in all forests. This raises the need for indirect approaches to evaluating biodiversity
on a level compatible with forest management practices, making it easier to take
account of biodiversity on a day-to-day basis.

A recent study on mainland France (Larrieu et al. 2019) focused on quantifying
the relationships between descriptive, directly measurable variables for forests and
samples of local biodiversity. These relationships have the potential to highlight
variables that may act as indirect indicators of local biodiversity. The study was
based on a relatively large dataset (487 observations, each corresponding to a circular
area of 1 hectare), comparing descriptive variables with sampling data across a range
of different forest contexts, for a number of species that varied between observations.
The taxonomic richness of different groups and the descriptive variables in the
dataset were all considered as components in the analysis (Larrieu et al. 2019). Each
biodiversity variable is linked to predictors, observed using a classic regression
model. The methodological issues highlighted above do not arise in this case due to
the quantity of available data. In this chapter, the SEM approach will be used to
integrate the grouped structure of observed variables into this analysis. In order
to maximize the number of species groups which can be treated simultaneously and
to maximize the homogeneity of population types, we have chosen to work on a
sub-set of the data from (Larrieu et al. 2019), consisting of 41 observations from two
low-altitude, predominantly deciduous forests.

Fifteen descriptive variables are available for each observation site, comprising
historical, structural and composition variables that are considered particularly
relevant for forest contexts. Some of these variables are directly linked to the
population and current management practices, characterizing vegetation, deadwood,
very large trees, habitat trees (which contain unique structural elements, known as
dendromicrohabitats, which are home to certain species) and open spaces. Other
variables relate to the history and context of the forest: the temporal continuity of the
wooded area, and the presence of rocky and aquatic features (for more information
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concerning the ecological and forest management aspects of these variables, see
Larrieu and Gonin 2008).

The data also include biodiversity measures, obtained by sampling at the center of
the site. These measures relate to several groups of species. Three groups are
intrinsically linked to woody substrate and deadwood: polypores, saproxylic beetles
(which rely on decomposing wood or other saproxylic species for at least part of their
life cycle) and bryophytes (corticolous or saproxylic). Two groups depend on the
presence of specific structures in trees (dendromicrohabitats like cavities, peeling
bark, etc.): bats and cavity-nesting birds. Three further groups that are associated
with the forest environment without clearly depending on the presence of the
attributes listed above include vascular woodland plants, non-cavity nesting
woodland birds and non-cavity nesting bats. The final three groups – ground beetles,
non-forest specialist vascular plants and non-forest specialist birds – have a broader
ecology and are not necessarily dependent on the woodland environment. One or
more biodiversity measures are used for each sampled group, giving a total of 13
useable measures of species richness.

10.2. Structural equation model

As we saw at the end of section 10.1.2, our aim here is to model the components
of interest in a socio-ecosystem in the form of latent variables, in the sense described
in the introduction to this book. Observed variables will be considered as measures of
the latent variables in the model. An SEM consists of (i) the relations between each
latent variable and the observed variables used to measure them (forming groups of
observed variables), and (ii) the relationships between latent variables. The set of type
(i) relationships constitutes the measurement model, while the type (ii) relationships
make up the relational model (see Figure 10.1). The relational model, which describes
the relationships between components in a socio-ecosystem, is generally the focus of
most studies.

10.2.1. Hypotheses and general structure of an SEM

10.2.1.1. Data set
Consider a data set made up of u observations of n variables. These variables are

presumed to be centered and reduced, such that the empirical variance–covariance
matrix S of the observed variables is a correlation matrix. The data set is modeled as
the result of u independent drawings of n variables following a multivariate Gaussian
distribution. The marginal distributions are presumed to be centered and reduced such
that the associated variance–covariance matrix, denoted as Σ, is a correlation matrix.
In other terms, the fact that the data set is centered and reduced is used to establish the
actual means and variances of the observed variables a priori. This hypothesis is used
for reasons of commodity, but is not strictly necessary (see section 10.5).
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Figure 10.1. Conventions used in representing an SEM. Latent variables are shown
as circles, while observed variables are represented by squares. Relationships are
indicated by arrows. Blue arrows connecting a latent variable and an observed variable
indicate that this relationship belongs to the measurement model. Red arrows between
latent variables indicate relationships in the relational model. In this case, the relational
model includes just one relationship, whereas the measurement model contains six
relationships. In the example shown here, X1, X2 and X3 form a group of observed
variables that measure the latent variable Z1, and Z1 has a causal effect on Z2. For a
color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

10.2.1.2. Formalization of the measure model and relational model
10.2.1.2.1. Measurement model

We shall consider that the observed variables are linked to p latent variables
Z1, ..., Zp with centered reduced Gaussian distributions. Here, we presume that each
observed variable is connected to just one latent variable. If an observed variable Xk

is connected to a latent variable Zi, then:

Xk = αikZi + Ek [10.1]

where αik ∈ [0, 1], and Ek is a centered Gaussian variable of variance 1 − α2
ik.

Variables Ek represent measurement errors, and are taken to be pairwise independent
(both within a group and between groups of observed variables associated with
different latent variables). The set of equations of type [10.1] defines the
measurement model of the SEM. Coefficients of type αik can be compiled into a
rectangular matrix A of dimension p × n such that Aik = αik if the observed
variable Xk measures the latent variable Zi and Aik = 0 otherwise.

Matrix A enables relations of type [10.1] to be summarized in a compact manner:

X = t (A)Z+E [10.2]

where t (M) is the transpose of matrix M , X = t (X1, ..., Xn), Z = t (Z1, ..., Zp)
and E = t (E1, ..., En).
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10.2.1.2.2. Relational model
The relational models used in SEM must be acyclic: there must be no paths within

the oriented graph of relations between latent variables (red arrows according to the
convention set out in 10.1) leading back to the starting point (see Pearl 2000, p. 13).

The relationships between latent variables in the relational model (the structural
equations) are written as follows:

Zj =
p∑

i=1

βijZi + Fj , [10.3]

where βij ∈ R∗ if Zi is presumed to have a causal effect on Zj (i.e. there is an
arrow from Zi to Zj in the graphical representation of the model: see Figure 10.1)
and βij = 0 otherwise. Fj is a random Gaussian variable with a mean of zero and
variance δ2j describing the variations in Zj , which are not explained by the relational
model. Thus, in a relational model with p latent variables, we have p residual variance
terms F1, ..., Fp. The causal effects between latent variables reflected in coefficients
of type βij may be compiled into a square matrix B of dimensions p × p such that
Bji = βij . As mentioned before, B must be interpretable as the matrix of links in a
weighted acyclic graph. Using matrix B, relations of type [10.3] can be expressed in
a compact manner:

Z = BZ+ F, [10.4]

where Z = (Z1, ..., Zp) and F = (F1, ..., Fp)

Terms F1, ..., Fp are presumed, by default, to be pairwise independent. However,
factors that are not captured by the observed variables, and are thus not represented in
the latent variables, may generate correlations between terms. If two terms Fi and Fj

are correlated in this way, a parameter γij is used to describe their covariance. These
parameters are then compiled into a covariance matrix ΣF such that: (i) [ΣF ]ii = δ2i ;
(ii) [ΣF ]ij = 0 if Fi and Fj are not presumed to be correlated; (iii) [ΣF ]ij = γij ∈
[−δiδj , δiδj ] if they are believed to be correlated.

The hypothesis that the latent variables are standardized and equation [10.3] induce
certain constraints for parameters βij , δj and γij :

V (Zj) = 1=

[
p∑

i=1

β2
ijV (Zi) + δ2j

]
+2

[
p−1∑

i1=1

p∑

i2=i1+1

βi1,jβi2,jCov (Zi1 , Zi2)

]
[10.5]

A latent variable Zi that is not causally affected by any other latent variables in the
model gives us Zi = Fi. Variables of this type are known as exogenous variables. The
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type of decomposition shown in equation [10.5] can be applied recursively over the
variance and covariance terms of the right member in order to obtain the exogenous
variables (see Table 16.2 of Sokal and Rohlf 1995). The variance and covariance terms
of exogenous variables are known in advance: the variances correspond directly to
the residual variances δ2j and the variable reduction constraint implies δ2j = 1; the
covariances are either zero, or correspond to parameters of the type γij . This finally
gives us a constraint on the parameters βij , δj and γij used in chains of causal relations
ending with Zj . By repeating this operation for all latent variables of the model, we
obtain p constraints on the parameters.

10.2.2. Likelihood and estimation in an SEM

All of the tools used with a classic linear model can be applied in order to estimate
and test SEMs. In this chapter, we shall focus on estimation and testing approaches
based on the likelihood of the parameters of the SEM, and on likelihood relations
between SEMs. Other approaches (least squares, Bayesian estimation, etc.; see Lei
and Wu 2015) exist, but the statistical framework is generally less sophisticated.

10.2.2.1. Likelihood of parameters (A,B,ΣF ) in an SEM
The hypothesis that the observed variables obey a centered multivariate Gaussian

distribution implies that the log-likelihood of the parameters (A,B,ΣF ) of an SEM
corresponds to the log-likelihood of the correlation matrix Σ, which they predict for
the observed variables:

LL (Σ; [x]) = C − u
2

[
log (|Σ|) + τ

(
Σ−1S

)]
, [10.6]

where [x] denotes the table of observations of dimension u× n, C = −un
2 log (2π) is

not dependent on the values of the data or on the parameters of the SEM, |Σ| denotes
the determinant of Σ and τ

(
Σ−1S

)
denotes the trace of Σ−1S.

Equation [10.6] is a classic result in the linear model (Rao 1973; Muirhead 1982),
which is at the heart of SEM theory (see Appendix 4a of Bollen 1989). This implies
that the likelihood of the basal parameters of an SEM is only dependent on the data via
the adequation between the induced correlation matrix Σ and the empirical correlation
matrix S.

10.2.2.2. Maximum likelihood estimator in an SEM
Working on the hypothesis that B is the matrix of an oriented weighted acyclic

graph, the correlation matrix Σ can be expressed as a function of the basal parameters
of the SEM, obtained by combining [10.2] and [10.4]:

Σ = Σ (A,B,ΣF ) = t (A)

[
p∑

s=1

t (B)s ΣFB
s

]
A+∆1−α2 , [10.7]
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where ∆1−α2 is a diagonal matrix of dimension n × n of which the kth diagonal
coefficient is worth 1−α2

ik, where αik is the coefficient linking the observed variable
Xk to the latent variable Zi, which it measures.

In practice, finding the maximum likelihood estimator of an SEM comes down to
maximizing the following criterion:

λ (A,B,ΣF ) = −
[
log (|Σ (A,B,ΣF ) |) + τ

(
Σ (A,B,ΣF )

−1 S
)]

10.2.2.2.1. Parameter constraints

Maximization is carried out under a set of constraints of various origins: (i) the
structure of the SEM means that certain coefficients of A, B and ΣF must be zero;
(ii) the reduced character of the latent and observed variables imposes constraints of
the type [10.5], and the coefficients of type α must have an absolute value of less than
1; (iii) the coefficients of type αmust be positive; (iv) matrix ΣF must be symmetrical
and positive definite.

In practice, it is hard to guarantee that the matrix ΣF will remain positive definite
throughout the optimization process, particularly if the model contains free correlation
parameters of type γ. Our approach is to optimize the likelihood without the positive
definite constraint on ΣF , then to project the estimator of ΣF obtained into this way
onto the space of positive definite matrices, before re-estimating the other parameters
conditional on this projection.

10.2.2.2.2. Identifiability problem

Certain structures in the measurement model and relational model of SEMs can
result in situations in which any matrix Σ, which can be attained by equation [10.7],
can also be attained using an infinite number of combinations of distinct basal
parameters (A,B,ΣF ). In this case, the maximum likelihood estimator is not defined
in a unique manner, and numerical optimization methods will not converge: this is
known as an identifiability problem. For example, in an SEM with a single latent
variable measured by a group of two observed variables, there are an infinite number
of combinations of parameters α with the same product, which will result in
maximum likelihood.

This type of problem in measurement models can be avoided through the use of
two additional constraints: (i) if a latent variable Zi only takes a single observed
variable Xk as the measure, then αik is arbitrarily fixed at 1; (ii) if a latent variable
Zi can take two observed variables Xk and Xl as measures, and is not itself involved
in a relationship in the relational model (i.e. line i and column i in B are zero), then
we take αik or αil fixed at 1. It is harder to avoid identifiability problems connected
to the structure of the relational model. One necessary condition is that the number
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of arrows in the overall SEM must not exceed the number of empirical correlation
coefficients, equal to n(n−1)

2 (see Grace 2006, pp. 116-121, for more details); however,
this condition is not sufficient.

10.2.3. Fit quality and nested SEM tests

Under the hypothesis of identifiability, the classic theory of the linear model
indicates that the maximum likelihood estimator is almost certain to exist. We now
wish to examine the fit of the SEM estimated using maximum likelihood. Let Σ̂ be
the correlation matrix of variables associated with this SEM.

10.2.3.1. Goodness-of-fit test
The quality of an estimated SEM can be assessed by means of a goodness-of-fit

(GoF) test, designed to choose between the null hypothesis H0 : Σ = Σ̂ and the
alternative hypothesis H1 : Σ &= Σ̂. Rejection of H0 implies that the estimated SEM
is not sufficient to describe the correlations between observed variables (i.e. arrows
need to be added to the graph). This test offers a means of explicitly checking the type
I error rate, which is the probability of falsely concluding that the estimated SEM is
not sufficient to describe the data (i.e. concluding that H1, while in reality, H0 is true).
However, it does not guard against type II errors, the probability of falsely concluding
that the SEM in question is adequate (i.e. concluding that H0 when in fact H1 is
true). This latter risk may be significant if not controlled, and acceptance of the null
hypothesis H0 is only weak proof of the validity of the estimated SEM.

To implement this test, we can consider the statistics of the difference in
log-likelihood: ∆LL = LL

(
Σ̂; [x]

)
− LL (S; [x]). ∆LL is calculated using equation

[10.6].

10.2.3.1.1. Asymptotic test
Under asymptotic hypotheses (i.e. for very high values of u) and in the identifiable

case, −2∆LL is distributed according to a χ2 distribution with r degrees of freedom
under H0 (Lejeune 2010, p. 225), where r is the number of arrows to add to the
estimated SEM in order to obtain an SEM with the capacity to attain any correlation
matrix Σ, while remaining identifiable. In practice, r may be evaluated by determining
the number f of arrows (across both the measurement model and the relational model)
in the graphic representation of the estimated SEM, taking r = n(n−1)

2 − f . H0

is rejected if the quantile q corresponding to the statistic ∆LL observed in a χ2 (r)
distribution is greater than 1 − a, where a is the level desired for the test (generally,
a = 0.05). The p-value of the test is 1− q.

10.2.3.1.2. Re-sampling test
The p-value of the test based on a χ2 distribution of −2∆LL under H0 is one

of the most widespread measures used to evaluate the quality of SEMs (despite the
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weakness of the validation). However, the χ2 distribution of T = −2∆LL under H0

is a result which requires a high number of observations u, and this is rarely the case
in our context of study. Re-sampling (bootstrap) methods are another recommended
option for approximation the distribution of T = −2∆LL under H0.

The classic non-parametric bootstrap approach consists of a random drawing with
replacement of u observations from the group of initial observations, and recalculating
T for the sample obtained in this way. By repeating the operation a high number B of
times, we obtain a series of values of T : T ∗

1 , T ∗
2 ,..., T ∗

B conditional on the empirical
distribution of observations. However, the distribution of T ∗ generated in this way
is very similar to an H0 : Σ = S hypothesis, rather than the desired H0 : Σ = Σ̂
hypothesis. It is thus likely to be closer to the observations than the result of the H0 :
Σ = Σ̂ hypothesis, and the type II error rate may be particularly high (Bollen and
Stine 1992).

To correct this issue, Bollen and Stine (1992) propose the application of a
non-parametric re-sampling approach to transformed observations. In this case, we
prefer a more direct approach based on parametric re-sampling: sets of re-sampled
observations are generated via simulations of a centered reduced multivariate
Gaussian distribution with a correlation matrix Σ̂. H0 is rejected if the quantile q̂
corresponding to T in the distribution of the B values of T ∗ generated by the
simulations is significantly greater than 1− a, where a is the level desired for the test.

10.2.3.2. Comparing two nested SEMs using likelihood ratios and re-sampling

The likelihood ratio test presented above evaluates whether or not the
relationships included in the SEM are sufficient to give an adequate description of the
data. Similarly, we may wish to test whether all of the relationships included in the
SEM are useful. To do this, the SEM in question must be compared with a sub-model
in which a certain number of relations have been eliminated (i.e. set at 0). Two nested
models can be compared using a likelihood ratio test based on the test statistic
∆1,2

LL = LL
(
Σ̂1;S

)
− LL

(
Σ̂2;S

)
, where Σ̂1 denotes the correlation matrix

induced by the maximum likelihood estimator for the most constrained SEM, and Σ̂2

is that obtained with the least-constrained SEM.

Once again, we recommend using a parametric re-sampling approach, consisting
of (i) a high number of simulations of sets of observations, distributed according to a
multivariate Gaussian distribution with a correlation matrix equal to Σ̂1, calculating
the statistic ∆1,2∗

LL each time; (ii) rejecting H0 if the quantile of −2∆1,2
LL in the series

of −2∆1,2∗
LL resulting from the simulations is significantly higher than 1 − a where a

is the level desired for the test.

The fact that the type II error rate cannot be controlled is less problematic in this
case than for the global SEM test presented in section 10.2.3.1.2. In the global SEM
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adequation test, the validation of the estimated SEM was associated with the
acceptance of H0, a decision for which the potential error (second species risk) was
not controlled. Here, the validation of the estimated SEM is clearly associated with
the rejection of H0, in which case the potential error (type I error rate) is well
controlled.

10.3. Case study: biodiversity in managed forests

10.3.1. Preliminary steps

Variables from the data set described in section 10.1.3 are transformed to obtain
centered-reduced Gaussian variables by means of power transformations (Box and
Cox 1964). Seven variables, for which the transformation is fruitless, are eliminated:
this leaves us with a data set of 41 observations and 21 variables (see Table 10.1). A
measurement model is constructed based on latent variables relating to biodiversity
and describing populations, corresponding to the broad categories defined in section
10.1.3. Some of these categories are subdivided so that the observed variables within
a group are all positively inter-correlated (see Table 10.2). A relational model based
on a priori knowledge is then introduced. For example, the presence of very large
trees (TGB) affects the availability of dendromicrohabitats (DMH), as features such as
cavities are mostly found in trees of large diameter. Finally, we obtain the SEM shown
in Figure 10.2.

The next stage is to test the fit of the SEM proposed in Figure 10.2 with the data,
following the three main steps illustrated in Figure 10.3.

10.3.2. Evaluating the measurement model alone

This test aims to determine whether the structure of the measurement model is
compatible with the data, independent of the relational model (see Figure 10.3, test 1).
This is done using confirmatory factor analysis (see Bollen 1989, pp. 226–318). Let us
consider an SEM with the targeted measurement model (blue arrows in Figure 10.2),
but in which all possible correlation structures between latent variables are permitted.
If this model is rejected by the GoF test (section 10.2.3.1.2), then the structure of the
measurement model is inadequate, and the definition of the latent variables and their
connections to observed variables needs to be revised. This parametric re-sampling
test is then applied in our example. The empirical quantile of the statistic −2∆LL

observed in the re-sampled distribution (B = 500 repetitions) is worth q̂ = 0.458,
implying that the actual quantile of −2∆LL is less than 0.95 under H0. Thus, the
confirmatory factor analysis SEM will not be rejected by a test with a level of 0.05,
and the proposed measurement model will be accepted as the result of the first step in
Figure 10.3.
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Observed variable Definition
rs.carab Number of ground beetle species

rs.colsaproflor Number of saproxylic beetle species, flower-dwelling at adult stage
rs.bryo Number of corticolous or saproxylic bryophyte species

rs.chirocav Number of cavicolous forest bat species
rs.oisocav Number of cavicolous forest bird species
rs.myco.d Number of saproxylic polypore species
rs.florafor Number of vascular forest plant species

rs.oisoForNCav Number of non cavicolous forest bird species
rs.colsaproNFlor Number of non flower-dwelling saproxylic beetles

rs.floraNFor Number of non-forest vascular plants
rs.myco.ND Number of saproxylic fungus species other than polypores

nb.ess Number of tree species on site
nb.chand Number of standing deadwood (diam. ≥ 40cm) on site
nb.bms Number of pieces of deadwood on ground (diam. ≥ 40cm) in site
nb.tgb Number of very large living trees (diam. ≥ 70cm) on site
nb.cav Number of trees with cavities on site

nb.unbark Number of trees with exposed (barkless) wood on site
nb.bmh Number of trees with deadwood in the crown on site
open Proportion of ground covered with flowering plants (mostly helophiles)

bufPres Proportion of forest coverage in a radius of one kilometer around the site at
time of collection

bufPast Proportion of forest coverage in a radius of one kilometer
around the site in 1850

Table 10.1. Variables used in the case study

Latent variable Definition
BIOSAPRO Saproxylic biodiversity, dependent on wood substrate or deadwood
BIOBRYO Biodiversity of bryophytes
BIODMH Biodiversity dependent on dendromicrohabitats
BIOFOR Other forest biodiversity

BIOFLORANFOR Biodiversity of flora that does not grow under a full forest canopy
BIOCARAB Biodiversity of ground beetles, not forest specialists

DIVESS Biodiversity of tree species
OPEN Openness of the stand
TGB Presence of very large trees in the stand
BUF Stand belonging to a spatial and temporal continuity of forest cover
BM Availability of deadwood in the stand

DMH Availability of dendromicrohabitats in the stand

Table 10.2. Latent variables based on prior knowledge

10.3.3. Evaluating the relational model

Reasoning is now conditional on the structure of the measurement model identified
by confirmatory analysis.
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Figure 10.3. Main steps in SEM analysis. The diagrams follow the SEM presentation
approach illustrated in Figure 10.1. The green double arrows correspond to free
correlations, which are permitted to exist in the relational model (γ terms). Each orange
double arrow indicates a type of test, corresponding to a main step in the analytical
process. Test 1: evaluation of the measurement model alone using confirmatory factor
analysis (CFA). Test 2: evaluation of the relational model by comparison with the
selected CFA model. Test 3: significance of a relationship within the selected relational
model, using a nested model test with or without the target relationship. For a color
version of this figure, see www.iste.co.uk/peyrard/ecology.zip

10.3.3.1. Convergence of estimation

Figure 10.4 shows the estimators obtained for the SEM in Figure 10.2. The figure
exhibits divergence phenomena, associated with the fact that highly correlated latent
variables are used simultaneously to predict the same target latent variable. For
example, the effect of the availability of deadwood in a stand (BM) on saproxylic
biodiversity (BIOSAPRO) is close to 2, while, at the same time, the effect of
belonging to a spatially and temporally continuous forest environment (BUF) is less
than −1 (see Figure 10.4, section A). The presence of effects with an absolute value
greater than 1 in a standardized relational model is not impossible, but is highly
unlikely (such a result would suggest that the predictor in question explains over
100% of the variance of the target variable on its own). In this example, the extreme
effects appear to result from the fact that the latent variables BM and BUF have a
very high estimated correlation (see Figure 10.4, section B; correlation value 0.87).

Associations of highly correlated latent predictors are then eliminated from the
model, based on section B in Figure 10.4. This results in a new SEM, shown in
Figure 10.5, in which none of the parameter estimators β have an absolute value in
excess of 1.

10.3.3.2. Comparison with confirmatory factor analysis

The SEM in Figure 10.5 is compared with the CFA SEM obtained in section
10.3.2 using a nested model comparison test based on parametric resampling (see
Figure 10.3, test 2). This test evaluates whether the chosen relational model is
sufficient to express the correlation structure between latent variables. An empirical
quantile of q̂=0.98 is obtained for B = 500 simulated samples, which suggests that
our relational model is not sufficient.
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Possible sources of deviation between the SEM and the CFA are analyzed by
visualizing the divergences between the correlation matrices of the latent variables
(ΣZ ; Figure 10.6) predicted by these two models. Using this visualization, it is
possible to identify relations that could be added to the relational model in order to
reduce the degradation of fit with respect to the CFA model.

Figure 10.4. Estimators of the parameters of the SEM in Figure 10.2. Section A:
β type parameters of the relational model. Section B: Estimated correlations between
the latent variables in the model (corresponding to γ type parameters for exogenous
variable pairs). For a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

Candidate relationships are selected based on theoretical hypotheses concerning
the functioning of the forest ecosystem. For example, adding a relation from
BIOSAPRO to BIODMH in the model may reinforce the correlation between
saproxylic biodiversity (BIOSAPRO) and biodiversity, which is dependent on
dendromicrohabitats (BIODMH), a need which was clearly identified in Figure
10.6(B). From an ecological perspective, it is not unreasonable to suppose that stands
with a greater diversity of saproxylic species are also attractive, in terms of food
resources, to a wide range of organisms that rely on the availability of
dendromicrohabitats. This relationship is thus added to the model. Similarly, a
relationship is added to reflect the effect of the availability of deadwood at a site
(BM) on the biodiversity of bryophyte (BIOBRYO) species; this corresponds to the
saproxylic character of many of these species. The same approach is taken for each
of the relationships suggested in Figure 10.6. At the same time, relations with a very
low estimator β (< 0.05) are eliminated from the relational model in Figure 10.5 to
compensate for the possible loss of parsimony.
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Figure 10.6. Divergences between the correlation matrices of the latent variables
(ΣZ ) of the SEM in Figure 10.5 and the confirmatory analysis model. Divergences
are quantified coefficient by coefficient, testing whether the correlation predicted by
CFA deviates from the SEM prediction (approximate correlation comparison test; see
Lejeune 2010, p. 241). Pairs of latent variables for which the correlation predicted by
CFA is significantly higher or lower than that predicted by the SEM are shown in red and
blue, respectively, for a threshold of 0.05 (section A), or after conservative correction
using the Bonferronni method to take account of multiple tests (section B). For a color
version of this figure, see www.iste.co.uk/peyrard/ecology.zip

The resulting SEM is shown in Figure 10.7. This new model is not rejected by
the parametric resampling process MES (q̂ = 0.81, which is significantly lower than
previous value of 0.95 for B = 500 simulated samples), and the anomalous estimation
values have been removed (see Figure 10.8). Furthermore, this model now performs
as well as the CFA SEM using the nested model comparison test based on parametric
resampling: the empirical quantile of ∆12

LL over B = 500 simulated samples is q̂ =
0.89, significantly lower than 0.95. This final SEM will thus be taken as the result
of the second step shown in Figure 10.3. Note that an asymptotic fit test would have
given a different conclusion in this case, and the model would have been rejected with
a value of p = 4× 10−6.

10.3.4. Significance of parameters in the relational model

The components of the relational model of the SEM selected at the end of the
previous section (see Figure 10.7) are shown in Figure 10.8.

The significance of one or more parameters of type β is tested using the approach
described in section 10.2.3.2, that is, a test of the likelihood ratio by resampling
between nested models.
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Figure 10.8. Estimated relationships within the relational model of the SEM from
Figure 10.7. Section A: estimators of β type parameters. Section B: estimators of γ
type free correlation parameters between exogenous latent variables in the model. For
a color version of this figure, see www.iste.co.uk/peyrard/ecology.zip

Five parameters β are judged to be significant (see Figure 10.9). One notable
example is the relation TGB → DMH, cited as a relationship that was expected to be
present on the basis of the theory (see section 10.3.1). Six other parameters are
judged to be insignificant. A backward variable selection process could be used in
this case to evaluate the extent to which the elimination of some of these
relationships improves the parsimony of the model, without significant degradation
of fit with respect to the confirmatory analysis model.

We see from Figure 10.9 that the asymptotic significance threshold given by the
χ2 distribution is systematically lower than the threshold obtained by resampling,
suggesting that the resampling approach tends to detect fewer significant
relationships than the asymptotic approach and that, as a consequence, the
asymptotic approach would exhibit an inflated level of type I errors for these tests.

10.3.5. Findings

In this chapter, we have presented a step-by-step implementation of the SEM
framework using a dataset with few observations and a large number of variables. We
simplified a larger dataset, taken from a study by Larrieu et al. (2019), restricting the
spatial extent and the range of managed forest ecosystems. The biodiversity variables
used here were also different from those in the original study, and were normalized,
centered and reduced. Thus, the results obtained here are not directly comparable, in
quantitative terms, with those of the original study. Nevertheless, there are a number
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of qualitative similarities. For example, the presence of deadwood has a positive
effect (direct or indirect) on the biodiversity of several forest taxons (see Figures 10.7
and 10.8), although a more thorough backwards selection approach could be applied
in our case (see Figure 10.9).

Figure 10.9. Test of causal relations in the relational model shown in Figure 10.7.
Each vertical bar corresponds to the statistic of the likelihood ratio observed when
the target causal relationship is neutralized. Red bars correspond to a statistic which
is significant at a level of 0.05; the thresholds (continuous blue horizontal lines) are
determined by resampling (B = 100). The dotted blue horizontal line corresponds to
the asymptotic threshold associated with a χ2

1 distribution. For a color version of this
figure, see www.iste.co.uk/peyrard/ecology.zip

The SEM obtained in this chapter gives a parsimonious description of relations
within a dataset. The 21 observed variables were condensed into 12 latent variables,
representing the components of managed deciduous forest socio-ecosystems at low
altitude. Our relational model shows a simplified structure of the relationships
between components, with 6 × 5/2 = 15 γ parameters and 11 β parameters, for a
total of 26 links in the final model, down from a total of 12 × 11/2 = 66 possible
links. It also has the capacity to report effects with larger magnitude than those
suggested by pairwise relationships among observed variables, through a control of
measurement errors, which can be estimated using redundancy between variables
within the same group. For example, considering the relationship between the latent
variables representing the availability of deadwood in a stand (BM ) and bryophyte
biodiversity (BIOBRY O), the correlation coefficients between each of the observed
variables associated with BM and the observed variable for BIOBRY O are
between 0.46 and 0.57. The single link expressing this relationship in the final
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relational model is actually stronger, with an estimated effect of β̂ = 0.62 (see Figure
10.8).

Finally, this approach improves our understanding of managed deciduous forest
socio-ecosystems at low altitude, highlighting new relationships, including potential
interactions between biodiversity components (BIOSAPRO → BIODMH).
Further discussion of the distinctions between habitat effects and interactions
between species in datasets can be found in Chapters 7 and 8, which present other
methods based on latent variables that are designed for use in this context.

10.4. Discussion

SEMs provide a statistical framework for compact representations of theories
concerning the relations between components in a socio-ecosystem. These
components are represented by latent variables. In this chapter, we have shown how
SEMs (i) maintain statistical power in cases with large numbers of observed
variables, combining variables into groups and linking them to subjacent components
through a measurement model; (ii) contribute to improved understanding of
socio-ecosystems via progressive adjustments to the SEM structure throughout the
analytical process. The approach presented here differs in a number of ways from the
wealth of existing literature on SEMs (Bollen 1989; Grace 2006); these differences
will be presented and justified below.

10.4.1. A confirmatory approach

The approach presented here is, to a great extent, confirmatory, particularly in the
case of the example described in section 10.3: we aim to evaluate whether or not
an a priori model is corroborated by observations. Nevertheless, SEMs can also be
used in an exploratory manner, for example through exploratory factorial analysis
(see Bollen 1989, pp. 226–232), which is used to identify groups of variables giving
the best possible compromise between fidelity to the correlation matrix of observed
variables and parsimony. For more details on component-based regression methods,
see Chapter 9, which focuses on a similar objective.

The example presented here does not feature a strictly confirmatory approach. The
residual correlation matrices (Figure 10.6) of a badly fitted SEM were examined in
order to identify means of improving the fit, while maintaining a critical approach to
added relations on the basis of theoretical knowledge. In practice, therefore, we used a
mixed model generating approach, similar to that described by Jöreskog and Sörbom
(1996) (see also Grace 2006, p. 134).
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10.4.2. Gaussian framework

In this presentation, the observed variables were presumed to follow a Gaussian
vector distribution. In such cases, the variables in a dataset may need to be
transformed in order to obey the distribution. It is important to note that this
transformation is not always possible, and that the transformation of original
variables may also result in a loss of significance in the values of the transformed
variables. While the Gaussian hypothesis results in a simple framework, which is
easy to implement, notably due to the remarkable compactness and low calculation
requirements of the associated likelihood, it can be problematic, notably in cases
where quantitative predictions are required. It does not, however, have a negative
impact on understanding systems. The application of monotone transformations to
data in order to obtain Gaussian distributions does not affect the ordination of values,
meaning that SEMs correctly describe whether or not variables are covariant, and
whether co-variations are positive or negative. The relationships expressed in the
relational model clearly highlight dependency and independence connections
between components in a system.

Various methods have been put forward for adapting estimation and testing
procedures in order to take account of data, which deviate from the Gaussian vector
hypothesis (Satorra and Bentler 1988). However, in cases where greater flexibility in
terms of distributions is desirable, it may be better to adopt a more general
hierarchical framework in conjunction with a Bayesian approach, although this
comes with a higher computation cost.

10.4.3. Centered-reduced observed variables

We chose to work with a centered-reduced data set and centered-reduced
observed variables in our SEMs. This implies that the variances of non-reduced
variables predicted by the SEMs must be equal to the corresponding empirical
variances in the non-reduced data set. Our analysis, therefore, focused on the
covariance structure between observed variables conditional on the observed
variances. This choice is similar to that used, historically, in the context of path
analysis (Wright 1921), and draws on the fact that an estimation of the variances of
observed variables is of limited interest, given the lack of clear quantitative
significance in the transformed variables. Nevertheless, there is no obligation to use
this hypothesis, and the variances of the observed variables can also be estimated
using the SEM approach.

10.4.4. Structural constraints

The structures of the relational and measurement models presented here are
subject to more constraints than are strictly necessary to obtain a valid SEM. Some of
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our restrictions were designed to reduce the risk of losing identifiability and to make
the results and diagnoses easier to interpret: namely, the condition that measured
variables must relate to only one subjacent variable, and the elimination of latent
variables without at least one associated observed variable. While these limitations
can, theoretically, be overcome, their use is highly recommended in practice. In our
case study, we also introduced free correlation terms γ between all of the exogenous
variables, but no others. Again, this choice is not obligatory, and in theory, free
correlation terms may be introduced in isolation between any pair of latent or
observed variables. However, our constraint makes it possible to project the matrix
ΣF onto the space of positive definite matrices in a simple, effective manner.

10.4.5. Use of resampling

In this chapter, we have highlighted testing techniques based on resampling in
order to avoid asymptotic hypotheses, which are not suited to our context of study.
This focus has inevitable implications in terms of our discussion of SEMs and their
simplicity. Estimating an SEM is a numerical optimization operation, and can take
several minutes using a standard computer. Multiple resamplings can thus be costly in
terms of computation time, and parallelization may be required.

The move from an asymptotic approach to resampling has a major impact on the
results of the different tests described here. For example, the asymptotic fit test
applied to the final SEM in our case study gives p-value of 4× 10−6, suggesting that
the SEM should be rejected on the grounds of insufficiency; however, this same SEM
passes the resampling test (see section 10.3.3.2). In individual tests of the relations
included in the SEM, more relations tend to be considered as significant using the
asymptotic approach than when using the resampling approach (see Figure 10.9).
These two results suggest that the asymptotic approach has an overall bias in favor of
complex models at the expense of simpler forms; this observation illustrates the
statistical implications of a move toward non-asymptotic approaches.
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