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ABSTRACT
Anthropogenic environmental changes are leading to habitat loss and degradation, driving many species to extinction.
In this context, habitat models become increasingly important for effective species management and conservation.
However, most habitat studies lack replicated study areas and do not properly address the role of nonstationarity and
spatial scales in determining factors that limit species occurrence under different environmental settings. Here we
provide an optimized multi-scale framework for analyzing habitat selection of the threatened Mexican Spotted Owl
(Strix occidentalis lucida) between 2 meta-replicated study areas: the Sacramento Mountains, New Mexico, and the
Mogollon Plateau, Arizona. The optimized scales of habitat variables strongly differed between the 2 study areas.
Percent cover of mixed-conifer was more strongly associated with the relative likelihood of Mexican Spotted Owl
occurrence in the Sacramento Mountains than in the Mogollon Plateau. Topographic covariates strongly explained
variance in the habitat model in the Mogollon Plateau, but not in the Sacramento Mountains. Topographically
constrained habitat availability may be affecting the relative likelihood of owl occurrence in the Mogollon Plateau, but
not in the Sacramento Mountains. In the Sacramento Mountains, suitable habitat and owl distributions show dissimilar
spatial autocorrelation patterns, indicating that the relative likelihood of occurrence may be influenced by factors in
addition to habitat. Owl distribution shows a periodic spatial pattern, suggesting that the relative likelihood of owl
occurrence in the Sacramento Mountains might be influenced by territoriality. Differences in habitat relationships
between the 2 study areas suggest that management strategies should be tailored to local conditions. This study
underscores the advantage of scale optimization and replicated studies in analyzing nonstationary habitat selection.
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La meta-replicación revela la falta de estacionariedad en la selección de hábitat a múltiples escalas para
Strix occidentalis lucida

RESUMEN
Los cambios ambientales antropogénicos están provocando pérdida y degradación de hábitat, conduciendo a muchas
especies a la extinción. En este contexto, los modelos de hábitat se tornan cada vez más importantes para el manejo y
la conservación efectiva de las especies. Sin embargo, la mayorı́a de los estudios de hábitat no presentan réplicas de
las áreas de estudio y no abordan adecuadamente el rol de la falta de estacionariedad y de las escalas espaciales para
determinar los factores que limitan la ocurrencia de las especies bajo diferentes escenarios ambientales. En este
estudio brindamos un marco de trabajo optimizado de múltiples escalas para analizar la selección de hábitat de la
especie amenazada Strix occidentalis lucida entre dos áreas de estudio meta-replicadas – las Sierras de Sacramento,
Nuevo México y la Meseta de Mogollón, Arizona. Las escalas optimizadas de las variables de hábitat variaron
fuertemente entre las dos áreas de estudio. El porcentaje de cobertura de los bosques de conı́feras mixtas estuvo más
fuertemente asociado con la probabilidad relativa de ocurrencia de S. o. lucida en las Sierras de Sacramento que en la
Meseta de Mogollón. Las covariables topográficas explicaron en gran medida la varianza en el modelo de hábitat en la
Meseta de Mogollón, pero no en las Sierras de Sacramento. La disponibilidad de hábitat ajustada por la topografı́a
podrı́a estar afectando la probabilidad relativa de ocurrencia del búho en la Meseta de Mogollón, pero no en las Sierras
de Sacramento. En las Sierras de Sacramento, el hábitat adecuado y la distribución del búho mostraron patrones de
autocorrelación espacial diferentes, indicando que la probabilidad relativa de ocurrencia podrı́a estar influenciada por
otros factores además del hábitat. La distribución del búho mostró un patrón espacial periódico, sugiriendo que la
probabilidad relativa de ocurrencia del búho en las Sierras de Sacramento podrı́a estar influenciada por la
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territorialidad. Las diferencias en las relaciones de hábitat entre las dos áreas de estudio sugieren que las estrategias de
manejo deberı́an estar ajustadas a las condiciones locales. Este estudio subraya las ventajas de la optimización de la
escala y la réplica de los estudios para analizar la selección de hábitat no estacionaria.

Palabras clave: aptitud de hábitat; cambio climático; conservación; diferenciación del nicho; especies en peligro;
modelado

INTRODUCTION

Species extinction rates in the Anthropocene are increas-

ing exponentially (Barnosky et al. 2011). Many species are

declining in response to major anthropogenic environ-

mental changes, such as biological invasion, pollution,

altered fire regimes, and climate change. Identifying and

monitoring the populations and habitats of species of

concern has become a critical task for conserving

biodiversity as many species experience habitat loss and

degradation.

The development of statistical models to quantify

species’ resource selection and predict habitat distributions

have garnered increasing interest in wildlife management

and conservation (Hegel et al. 2010). Because species may

be limited by different factors across their range,

depending on spatial variation in local habitat conditions,

replicated study areas are often needed to ascertain

potential nonstationary species–habitat relationships over

extensive species’ ranges that encompass differing envi-

ronmental conditions (e.g., Short Bull et al. 2011, Shirk et

al. 2014). Replicated study areas can improve our

understanding of factors that influence species occurrence

and how they differ between study areas because of

environmental variation (Cushman et al. 2011, Shirk et al.

2014). However, studies in different areas usually are

conducted independently and often differ in the type of

data collected, sampling scheme, experimental design, and

statistical approach, making comparison difficult.

Moreover, many habitat studies do not address the issue

of scale in their analyses (McGarigal et al. 2016) despite the

longstanding recognition of the scale dependency of

species–habitat relationships (Wiens 1989, Levin 1992,

Mayor et al. 2009), and many that incorporate scale do not

do so in rigorous fashion (McGarigal et al. 2016). A

misconception about multi-scale modeling is that using

multiple scales promises stronger inference (McGarigal et

al. 2016), but the reality is that multi-scale models may still

lead to prediction errors if the scales are chosen arbitrarily

or are not optimized (Thompson and McGarigal 2002,

Grand et al. 2004,Wasserman et al. 2012, Shirk et al. 2014).

Timm et al. (2016) analyzed the habitat selection of the

Mexican Spotted Owl (Strix occidentalis lucida; MSO), a

federally listed threatened species, in the Mogollon Plateau

of Arizona, and demonstrated that an optimized multi-

scale modeling approach provided large improvements in

predictive performance over single-scale models that were

not scale optimized. Although their study area was large,

they did not include a replicated study area, providing little

inference on how the MSO might respond to different

environmental conditions in other areas. Both multi-scale

optimized modeling and spatial replication are required to

facilitate robust inference and reliable predictions regard-

ing nonstationary species–habitat relationships (e.g.,

McGarigal and Cushman 2002).

Our objective was to demonstrate a multi-scale

optimization framework for evaluating whether environ-

mental factors that influenced habitat relationships were

stationary or nonstationary across the range of a species.

We accomplished this by using the threatened MSO, a

species of high conservation interest, as a case study. We

contrasted the results between 2 study areas dominated by

forested habitat: the Sacramento Mountains of New

Mexico and the Mogollon Plateau of Arizona. In both

study areas, owl nesting is concentrated in mixed-conifer

forest with high canopy cover (USFWS 2012). We

developed single-scale and multi-scale habitat selection

models, and identified factors in each study area that led to

differences in the models. We also evaluated the relation-

ship between scale and spatial pattern of owl and habitat

distributions in the Sacramento Mountains. Our analysis

was guided by 3 hypotheses:

(1) The scale-optimized model will outperform the

unoptimized models, and will illustrate qualitative

differences in the interpretation of habitat relation-

ships of MSO.

(2) MSO will exhibit nonstationarity in habitat selection

between the 2 study areas. Specifically, the scale-

optimized model for the Sacramento Mountains will

differ from that reported for the Mogollon Plateau

because of different physiographic environments. In

the Sacramento Mountains, we expect forest compo-

sition variables such as percent canopy cover and

forest type will be more important than topographic

variables because topography is dominated by a single

high-elevation massif where mixed-conifer forests are

fairly widespread and not restricted by topography. In

contrast, mixed-conifer forests on the Mogollon

Plateau are more topographically driven, occurring

mostly in high mountains, canyons, or buttes.

(3) The Sacramento Mountains model will explain

substantially less variance than the Mogollon Plateau

model because the Sacramento Mountains are char-
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acterized by extensive, high-elevation closed-canopy

mixed-conifer forests, which we expect to provide high

quality habitat for the MSO. This will lead to less

contrast between used and available points, and thus

lower model discrimination. On the Mogollon Plateau,

the heterogeneous pattern of suitable forested habitat

distribution will lead to large differences between used

and available sites, and thus higher model discrimina-

tion.

METHODS

Study Area
We modeled MSO habitat selection within a study area in

the Sacramento Mountains in south-central New Mexico,

and compared the resulting model to a model developed in

a separate study area located along the Mogollon Plateau

in north-central Arizona (Timm et al. 2016; Figure 1;

approximate distance between study areas ¼ 300 km).

The Sacramento Mountains study area encompassed

much of the Sacramento Ranger District of the Lincoln

National Forest and included approximately 150,000 ha

in a montane sky-island surrounded by a matrix of desert

and semi-desert habitat. Terrain within the study area

consisted of heavily forested montane ridges and slopes

interspersed with meadows in the larger valley bottoms.

Elevation ranged from 2,000 to 2,800 m. Precipitation

averaged 65 cm yr�1 with summer thunderstorms

providing more than 60% of annual precipitation and

most of the remainder occurring as winter snowfall

(Kaufmann et al. 1998). Higher-elevational forest was

dominated by mixed-conifer of white fir (Abies concolor)

and Douglas-fir (Pseudotsuga menziesii). Southwestern

white pine (Pinus strobiformis), ponderosa pine (Pinus

ponderosa), and quaking aspen (Populus tremuloides)

were also common in this area (Kaufmann et al. 1998,

Ward 2001). Maples (Acer spp.) and Gambel oak

(Quercus gambelii) were common in the understory at

some sites, and the most common shrub species was rock

spirea (Holodiscus dumosus). At the lower elevations,

drier forest types dominated the landscape, with pinyon

pine (P. edulis) and alligator juniper (Juniperus deppeana)

dominating many ridgetops and most south-facing

slopes. North-facing slopes were dominated by ponderosa

pine forest, sometimes with a prominent component of

Gambel oak. Gray oak (Q. griseus) and wavyleaf oak (Q.

undulatus) also were present in some areas. Mixed-

conifer forests in these areas were restricted to cooler

microsites such as drainage bottoms and north-facing

slopes.

The Mogollon Plateau study area used by Timm et al.

(2016) included much of the Coconino and Apache-

Sitgreaves National Forests (Figure 1). Most surveys for

Spotted Owls occurred in the higher-elevation forests that

occurred on high plateaus having isolated volcanic

mountains and deep canyons. The low-to-middle elevation

of these plateaus was dominated by extensive forests of

ponderosa pine, often containing an understory of Gambel

oak. At higher elevations, or in cold-air drainages, mixed-

conifer forests containing Douglas-fir and white fir

commonly dominated. Subalpine spruce-fir (Picea spp. –

Abies spp.) forests occurred at the highest elevations, while

areas just below the ponderosa pine belt were dominated

by pinyon-juniper woodlands (Brown 1982).

Model Development
We modeled habitat relationships of MSO using a suite of

compositional, topographic, and climatic covariates (de-

scribed below). To enhance comparability of results

between study areas, we repeated the procedures of Timm

et al. (2016) to develop our models and used the same data

source when possible (Table 1). We summarized these

procedures below, and noted any differences between

Timm et al. (2016) and our modeling methods.

Owl Locations
We used conventional protocols for studying Spotted Owl

demography to conduct owl surveys (Franklin et al. 1996;

see also Forsman 1983). Briefly, we determined areas

occupied by owls using nocturnal calling surveys. Once

areas occupied by an individual or pair of owls were

determined, we conducted daytime surveys to locate roost

or nest sites. Nocturnal locations were based on the

intersection of 2 or more compass bearings or a single

bearing and estimated distance to the calling owl, whereas

roost and nest locations were documented using global

positioning system (GPS) units, with accuracy within 10 m.

We excluded nocturnal locations from model development

because of the positional uncertainty related to non-visual

FIGURE 1. Locations of our study areas within the United States.
Also shown are locations of the Mogollon Plateau study area in
Coconino and Apache-Sitgreaves National Forests of Arizona,
and the Sacramento Mountains study area in Lincoln National
Forest of New Mexico.

The Condor: Ornithological Applications 119:641–658, Q 2017 American Ornithological Society

H. Y. Wan, K. McGarigal, J. L. Ganey, et al. Nonstationarity in multi-scale habitat selection 643

D
ow

nloaded from
 https://academ

ic.oup.com
/condor/article/119/4/641/5152924 by guest on 20 N

ovem
ber 2020



triangulation and because MSO might be attracted from

relatively long distances at night by calling surveys.

We used separate owl location data sets for training and

validating the habitat model in the Sacramento Mountains.

To train the habitat model, we used a data set from a

demography study conducted in the Sacramento Moun-

tains (Ganey et al. 2014) from 2002 to 2011. Surveys in this

study were conducted from March through August at

1,206 fixed call stations distributed throughout the study

area. This data set contained a total of 3,652 nest and roost

location points from 94 owl territories. We removed points

that were spatially duplicated so that there was only one

point per location, as well as points within 10 km of the

edge of the study area to avoid boundary problems, leaving

2,070 presence points for model training. To account for

possible pseudo-replication, we used a bootstrap proce-

dure to randomly sub-sample (without replacement) 200

presence points from the training data set and ensured a

minimum distance of 500 m between points. We repeated

this process to obtain 100 bootstrap training data sets. We

chose a bootstrap sample size of 200 to maintain a

sufficient sample-to-variable ratio in the habitat selection

model and for consistency with the sample intensity in the

Mogollon Rim study. Although the 500 m minimum

distance was less than the average distance between owl

territories, resulting in an average of roughly 2 observa-

tions per owl territory, it was the largest distance that

allowed us to generate a sample size of 200.

To validate the habitat model, we used MSO survey data

(n ¼ 326, after removing spatial duplicates and points

within 10 km of the study area boundary) collected

throughout the study area by the U.S. Forest Service

(USFS) during April to August from 1990 to 1993. These

locations were from the same data set that Timm et al.

(2016) used for model training and cross-validation. Most

surveys contributing to this data set were conducted at

calling stations located at 0.3–0.8 km intervals along forest

roads throughout the study area. Each survey lasted 15 min

or until an MSO responded. In roadless areas, surveys were

conducted by calling every 30–40 s while hiking to

ridgetops or canyon bottoms. Surveys were conducted on

calm nights. Most locations, especially where an MSO

responded, were surveyed multiple times. When an MSO

responded, crews marked the location and estimated

distance to the calling owl, and tried to locate the

roosting/nesting owl by day. We excluded nocturnal

locations in model validation, as did Timm et al. (2016).

For consistency with model development, we used the

same bootstrap procedure as above to create 100

validation data sets.

Pseudo-absence Locations

Because our owl location data sets contained presence-

only data, it was necessary to generate pseudo-absence

location points for the logistic regression models described

below. We generated pseudo-absence points using the

TABLE 1. Descriptions of covariates and the corresponding univariate optimized scale used in the multi-scale MSO habitat selection
models developed for the Sacramento Mountains study area and for the Mogollon Plateau study area (Timm et al. 2016). Covariates
were classified into 3 groups: composition covariates, topographic covariates, and climate covariates.

Top scale (m)

Covariate Description Class Data source
Sacramento
Mountains

Mogollon
Plateau

Canopy Percent canopy cover Composition Varied d 100 2,700
Edge Forest edge density Composition USFS Stand Map 3,700 400
Mixcon Percent cover of mixed-conifer Composition USFS Stand Map with LANDFIRE 5,000 500
PonderosaPine a Percent cover of ponderosa pine Composition USFS Stand Map with LANDFIRE 3,600 5,000
Proximity b Proximity index of forest Composition USFS Stand Map 4,000 Not provided
Slope Slope Topographic LANDFIRE 500 400
TPI Topographic position index Topographic LANDFIRE 300 500
TRI c Topographic roughness index Topographic LANDFIRE 5,000 Not provided
Elevation c Elevation Topographic LANDFIRE 5,000 Not provided
Solar b Solar radiation index Climate PRISM Climate Group 100 Not provided
MonsoonPrecip a Monsoon-season precipitation Climate PRISM Climate Group 5,000 3,300
DegreeDays a Cumulative degree-days Climate PRISM Climate Group 5,000 5,000
SAC Spatial autocovariate

a Covariates excluded from our final model but used in Timm et al. (2016) final multi-scale model.
b Covariates excluded from Timm et al. (2016) final multi-scale model.
c Covariates excluded from both models.
d Hansen et al. (2013) used in the Sacramento Mountains, a raster from Dickson et al. (2014) used in the Mogollon Plateau. Both data

sources were derived from Landsat imagery at 30-m resolution.
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procedure of Timm et al. (2016) to account for potential

sampling bias associated with elevation and proximity to

roads (Northrup et al. 2013). Briefly, we determined the

elevation range (2,243–2,903 m) of owl location points

using the digital elevation model (DEM) GIS layer from

LANDFIRE (2001), and buffered that range by 10% of the

difference between the maximum and minimum elevations

to create an elevational zone (2,177–2,969 m). We used

this zone to specify the constraining extent in which

random points were generated.We reduced the area of this

zone by removing areas that were .5 km from the convex

hull (i.e. smallest enclosing area) of owl location points.We

extracted the Euclidean distance from road for each owl

location using a road map obtained from the Lincoln

National Forest GIS database (USFS 2016) and then

calculated the frequency of owl location points in each

100-m interval distance bin (i.e. 0–100 m, 100–200m, etc.).

We generated 10,000 random points that essentially filled

the entire elevational zone, and then randomly sampled

5,000 pseudo-absence points that matched the proportion

of owl location points in each distance bin. We repeated

the process and created 2 independent sets of 5,000

pseudo-absence points, one for model training and the

other for model validation. We sub-sampled these pseudo-

absence points using the same bootstrap procedure as

before to create 100 training data sets and 100 validation

data sets. While it was generally recommended to sample

many more pseudo-absence points than presence points to

ensure sufficient representation of available habitat (e.g.,

Barbet-Massin et al. 2012), our use of the bootstrap
approach obviated the need to do so, as the available

habitat was well represented across the bootstrap replica-

tions.

Habitat Covariates
We used the same 12 habitat covariates (5 composition, 4

topographic, and 3 climatic) that Timm et al. (2016) used

for model development, all of which were hypothesized a

priori to potentially be important to MSO based on

previous studies. The 5 composition covariates were (1)

percent canopy cover, (2) percent cover of mixed-conifer,

(3) percent cover of ponderosa pine, (4) forest edge

density, and (5) forest edge proximity. With the exception

of the percent canopy cover layer, all covariates were

developed using the same data source as Timm et al.

(2016). The canopy cover raster used by Timm et al. (2016)

was specifically developed for the Coconino and Apache-

Sitgreaves National Forests (Dickson et al. 2014) and was

unavailable for our study area.We instead used the Hansen

et al. (2013) global tree cover layer because it was the best

(overall accuracy .90%) freely available raster that was

comparable to the raster used by Timm et al. (2016) as

both data sets were derived from LANDSAT imagery and

had the same spatial resolution. For the measurement of

percent cover of mixed-conifer and ponderosa pine, we

created 30-m resolution binary forest maps of the

respective cover type by classifying USFS-delineated forest

stands to one of five cover classes (mixed-conifer, ponder-

osa pine, spruce-fir, pinyon-juniper, and other) based on a

majority rule using the LANDFIRE Existing Vegetation

Type layer (LANDFIRE 2001). To calculate forest edge

density and proximity, we combined forest classes (i.e.

ponderosa pine, mixed-conifer, and aspen) and created a

binary forest map (i.e. forest and non-forest), and then

used FRAGSTATS (McGarigal et al. 2002) to analyze the

map. The 4 topographic covariates were (1) elevation, (2)

slope, (3) topographic roughness index, and (4) topo-

graphic position index (Jenness et al. 2013). These

covariates were derived from the LANDFIRE digital

elevation model (LANDFIRE 2001). The 3 climatic

covariates were (1) total monsoon season (May–August)

precipitation, (2) cumulative annual degree-days (using 10

8C threshold), and (3) solar radiation index (Fu and Rich

2002). These covariates were calculated using 30-year

normal (1981–2010) PRISM climate data (PRISM Climate

Group 2016).

The PRISM climate data had an original resolution of

800 m; all other habitat covariate layers had an original

resolution of 30 m. We resampled all layers to 30 m

resolution and kept the spatial grain of the analyses

constant at 30 m for all analyses.

Scaling Analysis and Covariate Selection
To identify the optimized scale and functional form (i.e.

linear or quadratic) for each covariate, we calculated

uniform kernel density values at each presence and

pseudo-absence location, using bandwidths from 100 m

to 5,000 m at 100-m intervals for a total of 50 scales. Note,

because we were interested in the equivalent of Johnson’s
(1980) second-order selection (i.e. home range selection

within the study areas), as described below, it was logical to

include scales that far exceeded the average home range

radius. We then conducted a single covariate logistic

regression model using linear and quadratic logistic

functional forms independently at each scale. We com-

pared models using Akaike’s Information Criterion cor-

rected for small sample size (AICc). For each covariate, the

scale and functional form of the model with the lowest

AICc score were identified as the best scale and functional

form, respectively. We repeated this procedure for each of

the 100 bootstrap training data sets and selected the modal

best scale and functional form of each covariate for use in

the multi-scale model below. As a safeguard against

multicollinearity in the multi-scale model, we computed

the Pearson’s correlation coefficient between each pair of

covariates at their best scale and functional form. When 2

or more covariates were found to be highly correlated (i.e.

jrj � 0.7), we retained the covariate with the greater
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average deviance explained across bootstrap replicates and

excluded the rest from subsequent analyses. Using this

rule, we removed percent cover of ponderosa pine,

topographic roughness index, elevation, monsoon season

precipitation, and cumulative degree-days from the

models. Variance inflation factors (VIFs) were ,3 for all

remaining covariates in the full multi-scale and single-

scale models (i.e. containing all remaining covariates) for

each bootstrap replicate.

Multi-scale Modeling
To model MSO nesting and roosting habitat suitability

within the Sacramento Mountains study area, we

developed a point Resource Selection Function (RSF) by

conducting an all-subsets multiple logistic regression

analysis with the retained covariates (each at its

optimized-scale and functional form) from the univariate

scaling analysis. We used logistic regression to estimate

the RSF as it approximated the use–availability point

process model (Johnson et al. 2006,Warton and Shepherd

2010, Aarts et al. 2012) and allowed us to easily obtain

inference on selection or avoidance of covariates and

generate predictive maps (Northrup et al. 2013). Because

all of our covariates were hypothesized a priori to be

potentially important to MSO based on previous studies,

we considered the all-subsets modeling approach the best

way to represent our uncertainty in the parsimonious

combination of variables that would best describe MSO

habitat selection in the study area. In addition, because
we considered each nest/roost as the potential center of a

home range and the pseudo-absence points were drawn

randomly from the entire study area, as described above,

we considered this point RSF as somewhat analogous to

Johnson’s (1980) second-order home range selection.

However, because we were obligated to use point

locations rather than delineated home ranges as the

observation unit, it was impossible to decouple true

second-order selection from potential third-order (i.e.

within home range) selection. Therefore, we recognized

that the multi-scale model represented a hybrid of sorts

in which the optimized scale of each covariate may have

reflected, to varying degrees, second- and/or third-order

selection.

We corrected for residual spatial autocorrelation by

adding an exponential spatial autocovariate term (SAC)

into the models (Timm et al. 2016). To determine model(s)

that best described the MSO distribution, we ranked all

candidate models using AICc and Akaike’s model weights.

We considered models with DAICc � 2 to represent

competing models (Burnham and Anderson 2003). We

averaged the estimates of each covariate from the suite of

competing models based on AICc weights (wi). We

repeated this process on all 100 bootstrap replicates. We

generated a bootstrap distribution for each parameter in

the model and calculated the mean and 95% quantile

interval (nonparametric analog to a confidence interval).

We used the mean of each parameter distribution to build

the final model.

Single-scale Modeling
We developed single-scale models using the covariates and

methods described above, but holding scale constant

across all covariates. We developed models across all

scales from 100 m to 5,000 m at intervals of 100 m for a

total of 50 scales. We calculated model-averaged deviance

explained at each scale across bootstrap replicates, and

selected the scale with the greatest deviance explained as

the optimized scale for the single-scale model.

Model Performance and Comparison
To compare the explanatory power of the multi-scale and

single-scale models, we used the proportion of deviance

explained. We used variance decomposition (varpart

{vegan}) in R (Oksanen et al. 2013) to assess the amount

of variance explained independently and jointly by each of
the 3 covariate groups (i.e. topographic, landscape

composition, and climate). We compared the parameter

estimates and the 95% confidence intervals, as well as

variable importance for each covariate (defined as the sum

of model weights across all models containing that

covariate) with the results from Timm et al. (2016). To

further inspect the importance of each covariate, we

sequentially removed each covariate (with replacement)

and evaluated the reduction in model deviance explained.

We divided that reduction by the total model deviance

explained to obtain the percent drop in deviance explained

for each covariate.

To compare the predictive performance of the multi-

scale and single-scale models, we evaluated and calculat-

ed the percent correctly classified (PCC), sensitivity,

specificity, Kappa statistics (j), and area under the curve

(AUC) using an independent owl location data set (see

Owl Locations). We used the optimal thresholds function

from the Presence/Absence package (optimal.thresholds

{PresenceAbsence}) in R (Freeman and Moisen 2008) to

determine the cutoff point for assessing PCC, sensitivity,

specificity, and j. Because these statistics were calculated

using presence–available data, the absolute values were

not meaningful; instead, we used these statistics solely to

compare models.

We created maps of the predicted relative probability

of occurrence of MSO for the entire Sacramento

Mountains study area using the parameter estimates

from the multi-scale model, the top single-scale model,

and the multi-scale model from Timm et al. (2016). We

calculated the area-adjusted frequencies (AAF) by

breaking the predicted RSF scores into 10 equal-sized

bins (i.e. 0–0.1, 0.1–0.3, etc.) and dividing the propor-
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tion of observations in each bin by the proportion of the

landscape in the same bin (Boyce et al. 2002). We used

the Spearman’s nonparametric test to estimate the rank-

order correlation between the AAF and bins. We

evaluated the correlation between the multi-scale and

the top single-scale derived predictive maps through a

pixel-by-pixel comparison using the complement of the

absolute difference between the 2 maps. At any given

pixel, this gave us a value that ranged from 0 to 1, in

which a greater value indicated stronger correlation and

vice versa.

Multi-scale Spatial Distribution Analysis
To evaluate the spatial relationship between predicted

habitat suitability and MSO nest/roost distribution in the

Sacramento Mountains, we computed Moran’s I correlo-

grams (Legendre and Legendre 1998) for suitable habitat

and owl locations separately and compared their patterns.

MSO locations comprised a point feature layer that was

directly useful here. We converted the habitat suitability

surface to a point feature layer by creating 5,000 random

points such that their distribution was proportionate to

the predicted habitat suitability. We calculated point

densities at each of the habitat points and owl points

within a uniform circular window with a radius of 100 m

to 5,000 m in 100-m increments for a total of 50 scales. At

each scale, we computed the correlograms of the MSO

point density and the habitat point density across lag

distances (i.e. the range over which spatial autocorrela-

tion is measured) of up to 10 km. We used the correlog

function from the ncf package (correlog {ncf }) in R to

compute the correlograms. We plotted the correlograms

of all 50 scales together as a surface using scales, lag

distance, and Moran’s I values as the axes. The correlo-

gram depicts the strength of spatial autocorrelation

across a range of lag distances. If the distribution of

MSO and habitat suitability were highly associated, their

Moran’s I correlograms would show similar patterns

across lag distances. In contrast, dissimilar patterns

would indicate that MSO distribution could be limited

by factors other than habitat, assuming that the habitat

model provided good predictions. In this context, a

periodic pattern to the MSO correlogram could indicate

that owl distribution was limited by territoriality with the

spatial lag between peaks in the correlogram associated

with mean distance between territory centers.

To estimate spacing of MSO nest sites in the

Sacramento Mountains, we measured the Euclidean

nearest-neighbor distance between known nest sites (i.e.

the shortest straight-line distance from a nest site to

another nest site; n¼ 61), and calculated the mean and the

coefficient of variation across these nest sites. Note,

because field crews were unable to locate all existing nest

sites, this estimate only represented the best estimate given

the data that we had.

RESULTS

Multi-scale Model
The final multi-scale model consisted of 7 covariates

(excluding intercept, quadratic terms, and SAC; Figure 2),

and explained an average deviance of 0.27 across all

bootstrap replicates. Percent canopy cover, percent mixed-

conifer, and slope were positively related to MSO habitat

selection, whereas forest edge proximity, solar radiation

index, and topographic position index were negatively

related to MSO habitat selection (Table 2). Forest edge

density and slope had negative quadratic coefficients,

suggesting a concave downward relationship with MSO

habitat selection. Percent canopy cover was the most

important covariate in the model, and showed the greatest

drop in model deviance explained when removed from the

model. Percent mixed-conifer and slope were the next

most important covariates, while all other covariates had

low variable importance and drop in deviance explained

when removed from the model.

In the Mogollon Plateau, the final model contained 8

covariates (excluding quadratic terms and SAC), and had a

0.64 deviance explained. Canopy cover and slope were the

most important covariates in the model, followed by

monsoon-season precipitation, topographic position index,

and percent cover of ponderosa pine (Table 2). Other

covariates, including forest edge density, percent cover of

mixed-conifer, and cumulative annual degree-days had low

variable importance. Data on drop in deviance explained

for covariates dropped from the model were not available

for the Mogollon Rim model.

Optimized Scale and Covariates
The univariate scaling analysis revealed variation in

optimized scale among covariates and between study areas

(Table 1). Composition covariates showed a broad range of

optimized scales in both the Sacramento Mountains (100–

5,000 m) and the Mogollon Plateau (400–5,000 m).

Percent canopy cover was related to MSO habitat at a

fine scale in the Sacramento Mountains (100 m), but at a

broader scale in the Mogollon Plateau (2,700 m). Species

composition covariates such as percent cover of ponderosa

pine and mixed-conifer were related at broader scales in

the Sacramento Mountains (3,600 m and 5,000 m,

respectively), whereas the scales of these same covariates

contrasted more strongly with each other (5,000 m and

500 m, respectively) in the Mogollon Plateau. Forest edge

density and proximity were related to the relative

likelihood of MSO occurrence at broad scales in the

Sacramento Mountains (3,700 m and 4,000 m, respective-
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ly). In contrast, forest edge density was related at a fine

scale in the Mogollon Plateau (400 m).

The optimized scale for topographic covariates varied

more in the Sacramento Mountains (300–5,000 m) than

in the Mogollon Plateau (400–500 m). In the Sacra-

mento Mountains, topographic position index and slope

were optimized at fine scales (300 m and 500 m,

respectively), whereas topographic roughness index and

elevation were both optimized at the broadest scale

measured (5,000 m). In the Mogollon Plateau, slope and

topographic position index were optimized at fine scales

(400 m and 500 m).

Climate covariates were mostly related to the relative

likelihood of MSO occurrence at broad scales in both

study areas. In the Sacramento Plateau, monsoon-season

precipitation and cumulative degree-days were best

measured at broad scales (5,000 m), whereas solar

radiation index showed a fine-scale relationship (100 m).

In the Mogollon Plateau, monsoon-season precipitation

and cumulative degree-days were also optimized at

broader scales (3,300 m and 5,000 m, respectively).

Single-scale Model

The optimized scale for the single-scale model in the

Sacramento Mountains was at 200 m with an average

deviance explained of 0.26. The average deviance explained

of single-scale models across all scales was 0.22. The

optimized single-scale model contained the same covari-

ates as the multi-scale top models (Figure 3; see also Figure

2). Except for forest edge proximity, signs of parameter

estimates were identical between the single- and multi-

scale models (Table 2). Like the multi-scale model, percent

canopy cover was the most important covariate in the best

single-scale model followed by slope. All other covariates

had low variable importance and drop in deviance

explained when removed from the model.

In the Mogollon Plateau, the best single-scale model

(400 m scale) included the same covariates as the multi-

scale model and had a deviance explained of 0.62 (see

Timm et al. 2016). The averaged deviance explained of all

single-scale models was 0.55 in the Mogollon Plateau.

Slope was the only covariate with a variable importance of

1.00. Canopy cover, percent cover of ponderosa pine,

FIGURE 2. Bootstrap distribution of each parameter in the multi-scale model. Red line represents the mean. Dotted lines represent
the 95% quantile interval (i.e. nonparametric analog to confidence interval). The mean of each parameter distribution was used to
build the final multi-scale model. See Table 1 for explanation of parameters.
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topographic position index, and monsoon-season precip-

itation were also important, with variable importance of

0.97, 0.88, 0.83, and 0.66, respectively. Other covariates had

variable importance of ,0.48.

Model Performance and Comparison

The multi-scale model outperformed the single-scale

model in terms of model explanatory power with greater

deviance explained across all scales in the Sacramento

Mountains (Figure 4). This also was the case in the

Mogollon Plateau (see Timm et al. 2016).

The multi-scale model showed nearly identical predic-

tive performance to the top single-scale model in PCC,

sensitivity, specificity, j, and AUC (Table 3). Although the

absolute values of these statistics were not meaningful

given our presence–available study design, the relative

values provided useful comparative indices. The multi-

scale and the single-scale models both correctly classified

68% of validation points and had j of 0.36. Both models

had higher sensitivity (0.70–0.74) than specificity (0.62–

0.67), displaying higher accuracy in predicting the relative

likelihood of suitable habitat than available habitat, which

was expected because we had pseudo-absence points

instead of true absence points. AUC for the multi-scale

and the single-scale models were both 0.73. AAF and

binned RSF scores were significantly correlated for both

models (Figure 5).

The Mogollon Plateau’s multi-scale model performed

more poorly in predicting owl locations in the Sacramento

Mountains than our multi-scale and top single-scale models,

correctly classifying only 59% of validation points and having

lower j (0.18), AUC (0.60; Table 3), and sensitivity (0.48)

statistics (also evident in Figure 6C). Conversely, specificity

was higher (0.70), which was likely a result of over-

classification of ‘‘non-suitable’’ habitat. AAF was not

significantly correlatedwith the binnedRSF scores (Figure 5).

Variance decomposition results showed nearly the same

results between the optimized single and multi-scale

models in the Sacramento Mountains, with composition

covariates explaining considerably greater variance com-

pared to the other 2 types of covariates in both models.

Composition covariates also explained far more of the

variance in the Sacramento Mountains than in the

Mogollon Plateau, where the best multi-scale model was

largely driven by topographic covariates (Figure 7). In

addition, there was much less confounding in the variance

explained by the 3 factors in the Sacramento Mountains

(i.e. relatively little ‘‘joint’’ variance explained by combina-

tions of factors) compared to the Mogollon Plateau, where

there was considerable confounding among factors.

The predictive maps created by the single-scale and the

multi-scale models were highly correlated in the Sacra-

mento Mountains, with most of the study area having a

correlation value of .0.8 (Figure 8).

Table 2. Model-averaged parameter coefficients, 95% confidence intervals (CI), variable importance (Vi), and percent of model
deviance explained (% model D2) for the multi-scale model and the top single-scale model (200-m radius) developed for MSO
habitat in the Sacramento Mountains, and the multi-scale model developed for the Mogollon Plateau (Timm et al. 2016). Quadratic
terms used in the models are denoted by superscripted ‘‘2’’. Values for the Sacramento Mountains were averages from 100 bootstrap
replications. See Table 1 for explanation of parameters.

Parameter

Sacramento Mountains Sacramento Mountains Mogollon Plateau

Multi-scale model Single-scale model Multi-scale model

Model-averaged
estimate (CI) Vi

% model
D2

Model-averaged
estimate (CI) Vi

% model
D2

Model-averaged
estimate (CI) Vi

Intercept �8.46 (�1.31 to �2.03) 1.00 - �6.79 (�1.02 to �2.35) 1.00 - 1.72 (3.71 to 7.99) 1.00
Canopy 2.81 (1.88 to 3.70) 1.00 18.0% 3.63 (2.79 to 4.55) 1.00 24.6% 4.86 (1.81 to 1.30) 1.00
Edge 2.22 (0.00 to 1.62) 0.14 0.7% 5.24 (0.00 to 2.80) 0.27 1.3% 8.32 (4.20 to 1.65) 0.30
Edge2 �2.91 (�2.10 to 0.00) - - �3.60 (�2.49 to 0.00) - - Excluded -
Mixcon 1.91 (1.94 to 3.37) 0.90 4.9% 4.73 (0.00 to 1.20) 0.65 2.3% 1.10 (5.93 to 2.03) 0.27
PonderosaPine Excluded - - Excluded - - 2.54 (9.96 to 6.35) 0.72
Proximity �5.44 (�6.47 to 1.21) 0.20 0.3% 4.60 (�3.67 to 2.88) 0.30 0.7% Excluded -
Slope 2.80 (0.00 to 4.94) 0.85 5.3% 1.64 (0.00 to 3.22) 0.75 5.5% 3.44 (2.91 to 4.07) 1.00
Slope2 �3.65 (�6.75 to 0.00) - - �2.13 (�4.19 to 0.00) - - 9.00 (1.74 to 4.61) 1.00
Solar �3.94 (�2.26 to 2.48) 0.32 0.6% �5.26 (�1.37 to 7.18) 0.20 0.3% Excluded -
TPI �5.81 (�1.60 to 0.00) 0.55 1.8% �4.24 (�1.12 to 3.74) 0.62 2.3% 1.22 (6.82 to 2.18) 0.79
TPI2 Excluded - - Excluded - - 1.00 (7.66 to 2.37) 0.79
MonsoonPrecip Excluded - - Excluded - - 2.00 (1.76 to 2.06) 0.90
MonsoonPrecip2 Excluded - - Excluded - - 1.50 (2.40 to 9.43) 0.90
DegreeDays Excluded - - Excluded - - 1.36 (7.54 to 2.46) 0.20
DegreeDays2 Excluded - - Excluded - - 6.00 (2.74 to 1.33) 0.20
SAC 7.36 (1.67 to 1.37) 1.00 - 1.11 (6.89 to 1.59) 1.00 - 1.37 (5.95 to 3.14) 1.00
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Multi-scale Spatial Distribution Analysis

Moran’s I correlogram surfaces showed strongly dissimilar

patterns of spatial autocorrelation between MSO points

and habitat points at all scales in the Sacramento

Mountains study area (Figure 9A, 9B). Across all scales,

habitat points displayed a gradient-like pattern of auto-

correlation that gradually decreased across lag distance,

indicating a smooth decline in similarity of habitat

suitability as distance increases (Cushman 2010). In

contrast, MSO points showed a periodic pattern of

autocorrelation at all scales; in particular, with peaks at

roughly 500 m and 2,000 m (Figure 9C–F).

The mean Euclidean nearest neighbor distance of MSO

nest sites was 1,879.45 m with a coefficient of variation of

39.04%.

DISCUSSION

Scale is a fundamental concept in ecology, but most habitat

selection studies, with notable exceptions, have not used

scale optimization frameworks to address the issue

(McGarigal et al. 2016). Habitat selection modeling has

often focused on identifying the most important habitat

variables in relation to species occurrence. However, even

with the appropriate variables, using unoptimized scales

may lead to weak or incorrect depiction of relationships

(DeCesare et al. 2012, Shirk et al. 2012, Sánchez et al. 2014,

Zeller et al. 2014, Vergara et al. 2016). Moreover, factors

that affect these relationships could be nonstationary

across different landscapes (Shirk et al. 2014). In this paper,

we demonstrated an optimized multi-scale modeling

framework for analyzing habitat selection and showed

how it could better our understanding of spatial non-

stationarity in habitat selection.

The Advantages of Scale Optimization Framework

Consistent with our first hypothesis, the optimized multi-

scale model outcompeted all single-scale models in

deviance explained (Figure 4), strengthening the perspec-

tive that a multi-scale framework is useful for rigorously

quantifying habitat relationships (McGarigal et al. 2016).

However, the improvement of the multi-scale model over

FIGURE 3. Bootstrap distribution of each parameter in the top single-scale model (200-m radius). Red line represents the mean.
Dotted lines represent the 95% quantile interval (i.e. nonparametric analog to confidence interval). The mean of each parameter
distribution was used to build the final single-scale model. See Table 1 for explanation of parameters.

The Condor: Ornithological Applications 119:641–658, Q 2017 American Ornithological Society

650 Nonstationarity in multi-scale habitat selection H. Y. Wan, K. McGarigal, J. L. Ganey, et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/condor/article/119/4/641/5152924 by guest on 20 N

ovem
ber 2020



the top single-scale model was relatively minor, as

indicated by all of the performance statistics (Table 3)

and the similarity of the predicted surfaces (Figures 6A, 6B,

8). The advantage of the multi-scale modeling approach in

our case study was mainly in the interpretation of the

model. First, we observed that the top suite of multi-scale

and single-scale models yielded different sets of covariates,

even with the same bootstrapped samples, and thus

provided a different characterization of suitable MSO

habitat (Table 4). For example, percent cover of mixed-

conifer appeared in the top-suite of multi-scale models in

most bootstrap replicates (variable importance¼ 0.90), but

appeared less in the top single-scale models among the

same bootstrap replicates (variable importance ¼ 0.65). In

this case, using the best related scale provided greater

sensitivity for characterizing the importance of mixed-

conifer stands to the owl.

Second, the scaling analysis also provided a statistical

approach to quantify and evaluate the specific scale of

selection for each covariate. For example, we found that

MSO were associated with some habitat covariates at the

finest scales but others at very broad scales (Table 1). In the

Sacramento Mountains model, canopy cover was opti-

mized at 100 m scale, whereas forest edge density was

optimized at 3,700 m scale, both with positive coefficients.

This implied that the MSO selected higher canopy cover at

nest/roost sites, but around that nest/roost core might

prefer forest landscapes featuring openings. Overall, our

results suggested that MSO selected home ranges at broad

scales in high-elevation forests dominated by mixed-

conifer forest, and within those forests they selected areas

with high canopy cover on lower slopes and in canyon

bottoms, but avoided openings and meadows at fine spatial

scales. Although these multi-scale habitat relationships

were generally recognized in previous MSO literature,

Timm et al. (2016) and this study are the only studies we

know of that explicitly and statistically examined multiple

scales for each covariate.

Nonstationarity in Habitat Selection

The scale-optimized framework combined with the

replicated study areas allowed us to identify and quantify

nonstationarity in habitat selection. Consistent with our

second hypothesis, we documented considerable non-

stationarity in habitat selection between these 2 study

areas. For example, the Mogollon Plateau model did a

relatively poor job of predicting MSO nest/roost sites in

the Sacramento Mountains study area compared to its

performance in the Mogollon Plateau study area (Table 3

and Figures 5, 6C), indicating that the factors affecting

FIGURE 4. Model-averaged proportion of deviance explained by
the optimized multi-scale model of MSO habitat (solid horizontal
line) and by single-scale models ranging from 100 m to 5,000 m
in 100-m increments (black markers) in the Sacramento
Mountains study area. Values represent averages of 100
bootstrap replications. Dotted lines and error bars represent
95% confidence interval.

TABLE 3. Comparative model performance for an optimized multi-scale model and the top single-scale model (200-m radius)
developed for MSO habitat in the Sacramento Mountains study area, and the multi-scale model developed for the Mogollon
Plateau study area (Timm et al. 2016) but applied to the Sacramento Mountains. All models were validated using independent
MSO survey data collected from 1990 to 1993 in the Sacramento Mountains. Sensitivity is the number of correctly predicted
present locations divided by the total number of present locations (true positive fraction). Specificity is the number of correctly
predicted pseudo-absent locations divided by the total number of pseudo-absent locations (true negative fraction). j represent
the percent improvement over random classification. Area under the curve (AUC) is a threshold independent measure of model
performance, with larger values indicating better model performance. Values are averages (6 standard errors) of 100 bootstrap
replications.

Model Threshold PCC Sensitivity Specificity j AUC

Multi-scale model (Sacramento
Mountains)

0.3 0.68 6 0.002 0.74 6 0.002 0.62 6 0.003 0.36 6 0.004 0.736 0.002

Top single-scale model (Sacramento
Mountains)

0.3 0.68 6 0.002 0.70 6 0.002 0.67 6 0.003 0.36 6 0.004 0.736 0.002

Multi-scale model (Mogollon
Plateau)

0.3 0.59 6 0.002 0.48 6 0.002 0.70 6 0.004 0.18 6 0.004 0.606 0.002
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habitat selection differed between study areas. Moreover,

although we and Timm et al. (2016) both demonstrated

scale-dependent MSO–habitat relationships, the scales

selected for each covariate varied considerably between

the 2 study areas (Table 1). Both studies showed similar

scales for topographic and climatic covariates, but differed

markedly for composition covariates. For example, per-

cent canopy cover was selected at a much finer scale in the

Sacramento Mountains than in the Mogollon Plateau (100

m and 2,700 m, respectively), whereas percent cover of

mixed-conifer was selected at a much broader scale (5,000

m and 500 m, respectively). While we are uncertain as to

what factors might be causing these differences, these

findings suggest that the spatial scales of habitat covariates

which the MSO responded to were likely nonstationary

and could potentially be influenced by local adaptation to

spatial environmental variation across different land-

scapes.

The differences in the variance decomposition between

study areas further illustrated nonstationarity in habitat

FIGURE 5. Area-adjusted frequencies (AAF) of the multi-scale
model, the top single-scale model, and the Mogollon Plateau
multi-scale model by resource selection function (RSF) score
bins. Error bars represent 95% confidence interval. Spearman’s
correlation and p values are shown in parentheses in the legend.
AAF was significantly correlated with RSF bin for both the single-
and multi-scale models developed for the Sacramento Moun-
tains, but not for the multi-scale model developed for the
Mogollon Plateau.

FIGURE 6. MSO nesting and roosting habitat suitability surface in the Sacramento Mountains study area predicted by (A) the multi-
scale model, (B) the top single-scale model (200-m radius), and (C) the Mogollon Plateau multi-scale model. Black markers represent
MSO locations from the entire validation dataset. Maps are on the same scale.

FIGURE 7. Model-averaged variance decomposition showing
proportions of variance explained (6 standard error) by
topographic, climate, and composition covariates in multi-scale
MSO habitat models developed for (A) the Sacramento
Mountains study area and (B) the Mogollon Plateau study area
(Timm et al. 2016). Areas of overlap between circles represent
shared variance between covariates.
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selection. Landscape composition was a better predictor of

owl occurrence than either topography or climate in the

Sacramento Mountains, whereas topography was the best

predictor in the Mogollon Plateau (Figure 7). We

hypothesized this relationship because the distribution of

suitable forested habitat in the Sacramento Mountains was

not related to topography as it was on the Mogollon

Plateau, where suitable habitats were restricted primarily

to cinder cones and canyons. Moreover, consistent with

our third hypothesis, the Sacramento Mountains model

explained less variance than the Mogollon Plateau model.

In the Mogollon Plateau, suitable forested habitats were

relatively rare, patchy, and constrained by topography,

which created large differences in the ecological charac-

teristics between used and available sites, resulting in a

model with high deviance explained (D2 ¼ 0.64; Timm et

al. 2016). Unlike the Mogollon Plateau, forested habitats

typical for nesting and roosting in the Sacramento

Mountains were relatively abundant, well distributed, and

not limited by topography. This resulted in a more

homogeneous landscape with extensive mixed-conifer

forests with high canopy cover and relatively lower

contrast between the ecological characteristics of used

and available locations, and thus lower deviance explained

(D2 ¼ 0.27). Such differences likely played a major role in

determining the nonstationarity of habitat covariates in the

multi-scale and top single-scale models.

Scale-explicit Spatial Distribution Analysis Revealed
Potential Territorial Behavior
This was the first study that we were aware of that

evaluated spatial autocorrelation of species and habitat

distribution in a scale-explicit manner. The dissimilar

patterns of spatial autocorrelation between suitable habitat

and MSO distribution indicated that MSO density was

likely influenced by factors in addition to, or other than,

habitat (Figure 9). We suspect that the MSO distribution

pattern was at least partly limited by territorial behavior

and intraspecific competition for resources linked to space,

resulting in fairly even spacing between MSO sites (Figure

6). The correlograms consistently showed 2 peaks of

autocorrelation at ~500 m and ~2,000 m lag distances

across all scales (Figure 9). We think that the first peak

represented the spatial clustering of points used by each

MSO individual or pair, and the distance between the 2

peaks (i.e. ~1,500 m) likely reflected the approximate

averaged distance separating owl territories (mean Euclid-

ean nearest neighbor distance ¼ 1,879.45 m). A 940-m

radius (i.e. the approximate half-distance between pairs)

circular area encompasses 277 ha, which is comparable to

both the breeding season home range size in mixed-conifer

forests in this study area (i.e. 228 6 37 ha) (Ganey et al.

2005) and the minimum area (243 ha) for Protected
Activity Centers (PACs) recommended in the recovery

plan (USFWS 2012). The fact that the MSO distribution is

spatially periodic at a lag distance approximating the

distance between territory centers and not following the

spatial pattern of habitat availability suggests that in the

Sacramento Mountains study area MSO population may

be near carrying capacity in at least some areas, with most

suitable territories occupied in a relatively uniform spatial

pattern.

Consistency with Previous Work in Describing MSO
Habitat
Nesting and roosting habitat characterized in this study

was mostly consistent with current literature on MSO

habitat selection. We observed strong selection for high

canopy cover around nest/roost sites at relatively fine

scales (Table 1) consistent with several previous studies

(Ganey and Balda 1989, Seamans and Gutiérrez 1995,

Peery et al. 1999, May and Gutiérrez 2002, May et al. 2004,

Ganey et al. 2013, Timm et al. 2016). MSO’s strong

preference for high canopy cover around nest/roost sites

may be linked to thermoregulation (Ganey 2004), protec-

tion from predators (Ganey et al. 1997), and nest structure

availability (Seamans and Gutiérrez 1995). In addition, we

FIGURE 8. Pixel-by-pixel comparison between the multi-scale
and the single-scale models’ predictive maps. Correlation was
calculated by 1 � the absolute difference between the multi-
scale and the top single-scale maps. Higher value indicates
stronger correlation.
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FIGURE 9. Moran’s I correlogram surfaces of (A) MSO distribution and (B) nesting and roosting habitat in the Sacramento Mountains
study area. Radius refers to the scale or size of moving window for calculating density distribution. Panels (C), (D), (E), and (F) are
correlograms at 400 m, 800 m, 1,200 m, and 2,400 m scales, respectively. Black curves show values for MSO nests/roosts, whereas red
curves show values for predicted habitat. Moran’s I value near 0 indicates weak spatial autocorrelation (random spatial distribution),
near þ1 indicates positive autocorrelation (spatial clustering), and near �1 indicates negative autocorrelation (spatial dispersion).

TABLE 4. An example of the top suite of multi-scale and single-scale (200 m) logistic regression models for predicting probability of
MSO occurrence in the Sacramento Mountains study area. Models at both scales were based on an identical bootstrap process, and
ranked by Akaike’s information criterion scores corrected for small sample size (AICc). Proportion of deviance explained (D2), change
in AICc (DAICc), and AICc weights (wi) of each model are provided. Models with DAICc � 2 are included.

Scale Model D2 AICc DAICc wi

Multi-scale CanopyþMixconþSlopeþSlope2þSAC 0.30 398.98 0.00 0.34
CanopyþMixconþProximityþSlopeþSlope2þSAC 0.30 400.49 1.50 0.16
CanopyþMixconþTPIþSlopeþSlope2þSAC 0.30 400.60 1.59 0.16

Single-scale (200 m) CanopyþSlopeþSlope2þSAC 0.29 403.56 0.00 0.09
CanopyþEdgeþEdge2þSlopeþSlope2þSAC 0.30 403.71 0.15 0.08
CanopyþEdgeþEdge2þMixconþSlopeþSlope2þSAC 0.30 404.13 0.57 0.07
CanopyþProximityþSlopeþSlope2þSAC 0.29 404.21 0.65 0.07
CanopyþSlopeþSlope2þTPIþSAC 0.29 404.21 0.66 0.07
CanopyþMixconþSlopeþSlope2þSAC 0.29 404.92 1.37 0.05
CanopyþProximityþSlopeþSlope2þTPIþSAC 0.30 405.32 1.77 0.04
CanopyþEdgeþEdge2þSlopeþSlope2þTPIþSAC 0.30 405.44 1.89 0.04
CanopyþMixconþProximityþSlopeþSlope2þSAC 0.30 405.50 1.94 0.04

The Condor: Ornithological Applications 119:641–658, Q 2017 American Ornithological Society

654 Nonstationarity in multi-scale habitat selection H. Y. Wan, K. McGarigal, J. L. Ganey, et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/condor/article/119/4/641/5152924 by guest on 20 N

ovem
ber 2020



observed a concave downward relationship between forest

edge density and MSO habitat selection, the same pattern

previously reported in a study of Northern Spotted Owl (S.

o. caurina; Comfort et al. 2016). Similarly, consistent with

others, we observed negative coefficients for topographic

position index, indicating selection for nesting and

roosting in drainage bottoms or on lower slopes (Seamans

and Gutiérrez 1995, May et al. 2004, Ganey et al. 2013).

The MSO is considered heat intolerant (Ganey et al. 1993,

Weathers et al. 2001); nesting/roosting in drainage

bottoms and on lower slopes likely provides a cooler

microclimate that minimizes heat stress. These sites also

may be better suited to grow the large trees typically

associated with Spotted Owl nest sites (Seamans and

Gutiérrez 1995, May et al. 2004, Ganey et al. 2013).

We observed strong selection for high percent cover of

mixed-conifer forest (Table 2) consistent with several

previous studies (Ganey and Balda 1989, Seamans and

Gutiérrez 1995, Peery et al. 1999, May and Gutiérrez 2002,

Ganey et al. 2013). However, Timm et al. (2016) reported

relatively low effect size and importance of percent mixed-

conifer in northern Arizona, and suggested that the MSO

in their study area might be utilizing pine–oak stands as an

alternative to mixed-conifer forest (Ganey et al. 1999).

Lastly, the 2 MSO populations we examined showed large

differences in the importance of topographical variables in

predicting habitat suitability. In the Sacramento Mountains

study area, topography appears to be less important than
vegetation. Here, the topography is dominated by montane

terrain in which the suitable habitat is relatively widespread

and primarily associated with occurrence of mixed-conifer

forests with high canopy cover. In contrast, topography

dominated the Mogollon Plateau model, with suitable

habitat typically associated with canyons and isolated

mountain peaks. This difference in the relative effects of

topography on the relative likelihood of MSO occurrence in

these 2 study areas is of particular importance. A large

portion of the MSO range is characterized by canyons, and

MSO inhabiting these areas likely have habitat relationships

that are different from those inhabiting contiguous forest

(Rinkevich and Gutiérrez 1996, Willey and van Riper 2007,

Bowden et al. 2015). Previous habitat models for MSO

inhabiting canyonlands also identified topography as the

best predictor of owl occurrence, with vegetation indices and

geologic layers also providing some information (Willey and

Zambon 2014). Unlike forested habitats, the rocky canyon-

lands are less susceptible to fire andmight function as crucial

fire refugia for the MSO as the risk of stand-replacing fire

increases in forested habitats (Jenness et al. 2004).

Management Implications
Differences in habitat selection between the 2 MSO

populations suggest that effective MSO conservation may

require different habitat management strategies in differ-

ent landscapes. In the Mogollon Plateau, in addition to the

scattered mixed-conifer forest, ponderosa pine stands may

be providing important suitable habitat for the MSO,

especially where Gambel oaks comprise the understory

(Ganey et al. 1999). In this area, managers should consider

conserving both mixed-conifer and pine–oak stands,

especially where they occur in relatively steep and narrow

canyons. In contrast, in the Sacramento Mountains,

ponderosa pine stands were less diagnostic of suitable

MSO nest/roost sites, and conserving mixed-conifer

stands should remain the highest priority.

Conclusion

Habitat selection models can be used to identify important

locations for prioritizing conservation efforts, but project-

ing a habitat model from one area to another can lead to

prediction errors because of nonstationarity of species–

environment relationships. We provided a methodology

for evaluating potential nonstationary species–habitat

relationships at multiple scales, and demonstrated that it

was possible and important to identify this nonstationarity

when considering habitat requirements in the case of the

MSO. We found that both spatial scales and the factors

important to predicting species distributions can vary

between different landscapes, suggesting the importance of

meta-replication and scale optimization analyses, especial-

ly across wide geographical areas.

Conservation recommendations across the range of the

MSO would greatly benefit from broader replicated studies

focusing on MSO habitat selection in more canyon-

dominated ecosystems. Optimized multi-scale models

broadened our understanding of Spotted Owl–habitat

relationships in the study areas we evaluated. Applying

these same analyses in other terrain types would help to

provide a unifying evaluation of habitat selection across

the range of the MSO. In the meantime, given the

differences we observed between 2 MSO populations

within forested habitat, we recommend that managers

develop and use information specific to different popula-

tions and ecological settings to guide management and

conservation planning.
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