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While large carnivores are recovering in Europe, assessing their distributions can help 
to predict and mitigate conflicts with human activities. Because they are highly mobile, 
elusive and live at very low density, modeling their distributions presents several 
challenges due to 1) their imperfect detectability, 2) their dynamic ranges over time 
and 3) their monitoring at large scales consisting mainly of opportunistic data without 
a formal measure of the sampling effort. 

Here, we focused on wolves Canis lupus that have been recolonizing France since 
the early 1990s. We evaluated the sampling effort a posteriori as the number of 
observers present per year in a cell based on their location and professional activi-
ties. We then assessed wolf range dynamics from 1994 to 2016, while accounting for 
species imperfect detection and time- and space-varying sampling effort using dynamic 
site-occupancy models. 

Ignoring the effect of sampling effort on species detectability led to underestimating 
the number of occupied sites by more than 50% on average. Colonization appeared 
to be negatively influenced by the proportion of a site with an altitude higher than 
2500 m and positively influenced by the number of observed occupied sites at short 
and long-distances, forest cover, farmland cover and mean altitude. The expansion 
rate, defined as the number of occupied sites in a given year divided by the num-
ber of occupied sites in the previous year, decreased over the first years of the study, 
then remained stable from 2000 to 2016. Our work shows that opportunistic data 
can be analyzed with species distribution models that control for imperfect detection, 
pending a quantification of sampling effort. Our approach has the potential for being 
used by decision-makers to target sites where large carnivores are likely to occur and 
mitigate conflicts.
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Introduction

Large carnivores are often considered as key elements for 
maintaining ecosystems. Because of their high position in the 
trophic chain, their extinction can lead to trophic cascades 
and detrimental changes in species abundance and function-
ing of ecosystems (Ripple et al. 2014). Once widespread in 
Europe, many populations of large carnivores were extirpated 
over the last century, mainly due to interferences with human 
activities (Breitenmoser 1998, Ripple et al. 2014). Since the 
1970s, all large carnivores have recovered, resulting in most 
of the European countries hosting at least one viable popula-
tion of large predators (Chapron et al. 2014). Often used as 
a conservation success story, the recovery of large carnivores 
in human-dominated areas comes with challenges, includ-
ing the question of whether there are any sufficiently large 
and functional areas left for viable populations (Packer et al. 
2013). Another issue is how to coordinate management of 
these species at large scales, possibly across borders (Linnell 
and Boitani 2012, Bischof et al. 2015), in particular in 
the context of international treaties and directives (e.g. the 
European Habitats Directive).

In this context, mapping the distribution of a species can 
help to target potential area of presence and mitigate conflicts 
often associated with the recovery of large carnivores. Species 
distribution models (SDMs) have become important tools 
in the ecological, biogeographical and conservation fields 
(Guisan and Thuiller 2005). By correlating presence-only or 
presence–absence data of a species to environmental factors, 
SDMs provide an understanding of habitat preferences and 
predictions on future species distribution. This is especially 
relevant for species involved in conflicts, since predicting 
their future presence can help targeting contentious areas and 
guide management to reduce conflicts (Guillera-Arroita et al. 
2015). However, the monitoring of large carnivores remains 
challenging to carry out in the field because these species 
live at low density and occupy wide areas (Woodroffe 2001). 
Therefore, assessing the distribution of these species comes 
with methodological challenges.

First, standard SDMs such as Maxent (Phillips et al. 2006) 
rely on the assumption that the focal species is detected 
everywhere it is present (Yackulic et al. 2013). Going 
undetected at a given site does not necessarily mean that this 
species is absent from that site, but rather that it may sim-
ply be missed for various reasons related to observer abilities, 
habitat characteristics or species level of activity (Kéry et al. 
2010, Kéry 2011). Ignoring the issue of imperfect detection 
can result in false absences that lead to flawed inference in two 
ways: 1) the distribution maps are biased by underestimat-
ing actual presences (Kéry and Schaub 2011, Lahoz-Monfort 
et al. 2014); 2) there may be confusion in identifying the 
drivers of the species distribution when detection depends 
on environmental explanatory variables that are independent 
from the variables influencing the species’ actual presence 
(Lahoz-Monfort et al. 2014). To cope with this first issue, 
single-season or static site-occupancy models were developed 

(Mackenzie et al. 2006) and have been widely used for car-
nivores (Long et al. 2010, Thorn et al. 2011, Sunarto et al. 
2012). Based on spatial and temporal replicated sampling of 
the target species, these models allow making the distinction 
between non-detections and true absences via the estimation 
of species detectability.

Second, most SDMs are implicitly based on the ecological 
niche concept (Grinnell 1917, Hutchinson 1957) and there-
fore rely on two main hypotheses: 1) the species is present in 
areas where environmental conditions are the most favorable 
and 2) dispersal is not a limiting factor (Jeschke and Strayer 
2006). However, expanding species are often absent from 
an area not because conditions are unfavorable but because 
they have not yet dispersed to this area, or because of geo-
graphical barriers or dispersal constraints (Araújo and Guisan 
2006). Hence, static SDMs ignore important dynamic pro-
cesses, which may lead to bias in the resulting distributions 
and should therefore not be used for prediction (Zurell et al. 
2009, Yackulic et al. 2015). To deal with this second issue, 
occupancy models have been extended (Mackenzie et al. 
2003, Royle and Kéry 2007) to account for the influence 
of dynamic processes such as colonization and extinction 
on the species range dynamics (Mackenzie et al. 2003). So-
called multi-season or dynamic site-occupancy models are 
increasingly used to assess the range dynamics of expanding 
or invasive species (Bled et al. 2011, Broms et al. 2016a), 
but remain rarely applied to carnivores (Marcelli and Fusillo 
2012, Miller et al. 2013).

Third, data collection is particularly costly if not unfea-
sible for elusive species that need wide areas due to the large 
presence area required for sampling. In this context, citizen 
science is considered as an efficient source of information 
to assess changes in a species distribution by covering wide 
areas (Schmeller et al. 2009). However, data from citizen sci-
ence are often collected with protocols that do not control 
for variation in the sampling effort 1) in time: a site can be 
sampled by several observers during a given year and not the 
following year and 2) in space: given two sites where the spe-
cies is present, if the sampling effort is lower in one site, this 
might lead to recording a false absence in this site (Kéry et al. 
2010). As a consequence, if sampling effort is not controlled 
for, detectability can be estimated low, for instance at sites 
with no sampling effort, leading to biased estimates of the 
distribution area (Van Strien et al. 2013).

Static and dynamic occupancy models hold promise to 
analyze population trends from opportunistic data because 
the data collection process is formally incorporated (Isaac 
et al. 2014). However, to address the third issue and apply 
occupancy models to opportunistic data, one needs to dif-
ferentiate between a site that was not sampled and a site that 
was sampled but the species was not detected. In the case of 
several species being monitored, the detection of a species in a 
site informs about the non-detection of other species because 
this site is known to have been sampled (Van Strien et al. 
2013). This no longer holds for single-species settings, and 
the assumption is sometimes made that all sites where at least 
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one detection occurred are sampled throughout the whole 
duration of the study (Molinari-Jobin et al. 2012, Rich et al. 
2013).

Here, we considered grey wolves Canis lupus as a case 
study to illustrate the challenges in using opportunistic data 
and SDMs to infer the range dynamics of large carnivores. 
Wolves disappeared in most of the western European coun-
tries during the twentieth century (Promberger and Schröder 
1993, Boitani 2010) except in Spain, Portugal and Italy 
(Boitani and Ciucci 1993). The species naturally recolo-
nized the French Alps from the remaining Italian population 
(Valière et al. 2003, Fabbri et al. 2007). Because the species 
is protected by law while being a source of conflicts with 
sheepherding, its recolonization process needs to be carefully 
monitored.

Our main objective was to describe and determine the 
drivers of wolves’ recolonization pattern in France between 
1994 and 2016. To account for imperfect detection, we built 
a dynamic site-occupancy model (Mackenzie et al. 2006) and 
analyzed opportunistic data collected by a network of trained 
volunteers since 1992. To do so, we built a posteriori the sam-
pling effort to account for biases in data collected through 
citizen science. To describe the recolonization process over 
time, we addressed two main questions: 1) what are the envi-
ronmental and biological factors influencing colonization 
and extinction probabilities? 2) How can sampling effort be 
inferred a posteriori, i.e. after the data were collected, and 
to what extent does sampling effort correlate with detection 
probability?

Methods

Study species and area

The first wolf Canis lupus occurrence was detected in France 
in the early 1990s as a consequence of the Italian popula-
tion’s expansion (Valière et al. 2003, Ciucci et al. 2009). The 
species then spread outside the Alpine mountains to reach 
the Pyrenees and the Massif Central westward first in 1999, 
and the Vosges Mountains northward from 2011. The wolf is 
an opportunist species that can adapt its diet depending on 
available prey species (Poulle et al. 1997, Imbert et al. 2016). 
In areas with livestock farming, strong interactions between 
wolf presence and sheep breeding usually occur. The study 
area mostly covered eastern France and a major part of central 
France (Fig. 1).

Data collection

Wolf detection data were made of presence signs sampled 
all year long from 1992 to 2016 thanks to a network of 
professional and non-professional observers. The network 
size has increased from a few hundred people in 1994, up to 
3138 wolf experts in 2016. Every observer is trained during 
a 3-d teaching course led by the French National Game and 

Wildlife Agency (ONCFS) to document signs of the species’ 
presence (Duchamp et al. 2012). Presence signs went through 
a standardized control process combining genetic identifica-
tion tools, and validation standards to prevent misidentifica-
tion (Duchamp et al. 2012). For every presence sign, the date 
and location of collection were stored in a geo-referenced 
database. These data are considered opportunistic in the sense 
that monitoring occurs all year long in an extensive manner 
without explicitly quantifying the sampling effort.

Dynamic site occupancy models

To model the colonization dynamics of wolf, we used 
dynamic site-occupancy models (Mackenzie et al. 2003) 
where sampling units were defined as 10  10 km cells (Euro-
pean Commission 2006). Site occupancy models rely on the 
closure assumption which states that the ecological state of 
a site (whether it is occupied or not) remains unchanged 
through occasions (or surveys) j within a year k. Sites were 
monitored mainly in winter from December to March, the 
most favorable period to detect the species between the two 
peaks of dispersal events in spring and fall (Mech and Boitani 
2010). We defined the secondary occasions j as December, 
January, February and March and yi,j,k, the observed state of 
site i equal to 1 if at least one sign of presence was found at 
site i during occasion j in the year k (and 0 otherwise).

We considered a state-space formulation of the dynamic 
occupancy model (Royle and Kéry 2007) in which the model 
is viewed as the combination of 1) the ecological process that 

Figure 1. Maps of cumulated species detections (red dots) for the 
period 1994–2016. Sites were defined as 10  10 km cells within a 
grid covering all detections. Dark green areas represent mountain-
ous areas with an altitude higher than 1500 m.
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involves the latent ecological state of a site, i.e. whether it is 
occupied or not; 2) the observation process that leads to the 
detections or non-detections by the observer conditional on 
the state of the system. The colonization probability gi,k is the 
probability that an empty site i during year k becomes occu-
pied during year k  1, while the extinction probability ei,k is 
the probability that an occupied site i during year k becomes 
empty during year k  1. We define zi,1 as the initial latent 
state of site i as being drawn from a Bernoulli distribution 
with the success probability being Yi,1,
zi,1 ∼ Bernoulli (Yi,1)
All other latent states zi,k for k  1 are drawn from a Bernoulli 
distribution as
zi,k  1 | zi,k ∼ Bernoulli (zi,k (1 – ei,k)  (1 – zi,k ) gi,k)
On top of the ecological process stands the observation 
process, in which the detections/non-detections are drawn 
from a Bernoulli distribution
yi,j,k|zi,k ∼ Bernoulli(zi,k pi,j,k)
where pi,j,k is the probability that the species is detected at 
site i for an occasion j during year k. The state-space formu-
lation is appealing as it makes explicit the latent states zi,k 
that can be used to build distribution maps. We modelled 
detection probability with logistic regression using sampling 
effort, road density and months as covariates. We modelled 
colonization probability with logistic regression using forest 
cover, farming cover, rock cover, mean altitude, proportion of 
high altitude ( 2500 m), the number of observed occupied 
neighboring sites at short distance, the number of observed 
occupied neighboring sites at long distance and the distance 
to the nearest barrier (road or main river) as explanatory vari-
ables. Finally, we modelled extinction probability as a logistic 
function of ‘year’ as a continuous covariate. We describe these 
covariates below.

Sampling effort

Monitoring the range expansion of wolves at the country 
level prevented us from implementing any standardized 
experimental sampling design. Instead, the presence signs were 
sampled in an opportunistic way and the sites were defined a 
posteriori. We adopted an original approach to infer the non-
detections based on the available qualitative information on 
the observers. When entering the network, observers attended 
a 3-d training session to learn how to identify the species and 
how it is monitored (Duchamp et al. 2012). During these 
training sessions, we recorded the observers’ personal and 
professional address, socio-professional category and entry 
date into the network. The entry and exit dates (whenever 
known) were used to quantify how many observers were 
present in the network each year. If necessary, we updated 
their socio-professional category. We calculated a circular 
buffer for the prospection area for each observer based on 
a radius specific to his/her socio-professional category and 

a center located at his/her address (Supplementary material 
Appendix 1 Table A1). For instance, for an observer belong-
ing to the category 1 (departmental authority) whose address 
was located in the French Department number 39, his/her 
prospection area would be 4999 km², which is the size of the 
Department (Supplementary material Appendix 1 Fig. A1 
and Table A2). For this observer, a circular buffer was built 
with a radius calculated as

Radius  prospection area 
π

For each 10  10 km cell, we then calculated the number of 
observers monitoring the species per year, i.e. the sampling 
effort, by summing the number of prospection areas overlap-
ping the cell (Supplementary material Appendix 1 Fig. A2). 
Sites with a sampling effort equal to zero were not prospected 
by observers. To avoid estimating a detection probability at 
sites that were not prospected, we set the detection probabil-
ity to zero when the sampling effort was null at these sites. 
When at least one observer was found in a cell in a given 
year, we considered that sampling occurred. We expected 
that the sampling effort had a positive effect on the detection 
parameter. We performed a sensitivity analysis to assess how a 
change in the construction of the sampling effort influenced 
the model parameter estimates (Supplementary material 
Appendix 1 Fig. A3).

Other covariates

Keeping in mind that wolves can adapt to a large range of 
different habitats, we incorporated proxies of variables that 
might shape the wolf distribution (Table 1). Using the 
CORINE Land Cover® database (U.E – SOeS, Corine Land 
Cover 2006), we defined three covariates to characterize the 
landscape of the study area: forest cover, farming cover and 
rock cover. Forest cover may structure the ungulate distri-
bution (i.e. prey species). As a consequence, we expected 
that forest cover would have a positive effect on coloniza-
tion, and rock cover would have a negative effect on coloni-
zation. Farmland cover was defined as a covariate including 
pastures areas which can be used by livestock, a possible 
prey to wolves and a proxy for rural landscape under human 
influence. Altitude may also have an influence on coloniza-
tion (Llaneza et al. 2012, Falcucci et al. 2013). We used the 
IGN BD_ALTI® database (250 m resolution) to calculate the 
mean altitude of each site as well as the proportion of alti-
tude higher than 2500 m. We predicted a site with a high 
proportion of high-altitude ( 2500 m high) would be less 
attractive for the species as ungulate species might be less 
abundant above this limit.

Dispersal capacity is a key factor to explain the dynamic 
of wolf colonization (Boyd and Pletscher 1999, Kojola et al. 
2006, Ciucci et al. 2009). Because cells occupied by estab-
lished packs may act as a source of dispersers at short and 
long-distance (Yackulic et al. 2012), the neighborhood of an 
unoccupied cell may influence its colonization probability 
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(Veran et al. 2016). In that spirit, the presence of individuals 
at short and long-distance could be accounted for by using 
conditional autoregressive models and auto-logistic models 
(Bled et al. 2013). However, due to the computational bur-
den and convergence issues, we could not implement this 
approach here. We therefore defined two covariates that con-
sisted of the observed number of contiguous observed occu-
pied cells at both short and long-distances around the focal 
cell. The short-distance covariate was defined as the number 
of observed occupied cells directly contiguous to the focal 
cell i.e. situated within a distance of 10 km. The limit for the 
long-distance parameter was set to avoid a dilution effect due 
to the small number of observed occupied cells at very long-
distances but large enough to account for most long-distance 
observed occupied cells that could play a role in the coloniza-
tion probability. Based on observations of wolf dispersal in 
the western Italian Alps (Marucco and McIntire 2010), we 
set this limit at 150 km around the focal cell. We expected a 
positive effect of these two covariates on the probability of a 
site to be colonized.

Because dispersal could be driven by the presence of 
physical barriers (Wabakken et al. 2001, Blanco et al. 2005), 
we defined a landscape covariate depicting the distance from 
the center of the site to the closest barrier defined as high-
ways or rivers (U.E – SOeS, Corine Land Cover 2006). We 
expected this covariate to impact colonization negatively.

In the first few years after sites become newly colonized, 
extinction probability is expected to be high as long as only 
isolated individuals use them. Once a pack has settled, pack 
persistence is the rule for wolves when other packs are present 
in the surrounding areas (Mech and Boitani 2010). Pack 
splitting may rise from various sources including harvest or 
poaching of alpha pairs (Gehring et al. 2003, Brainerd et al. 

2008) leading to a locally extinct site. Within the distribu-
tion of an actively expanding population, extinct sites might 
be recovered by surrounding individuals, either by dispersers 
or by neighboring packs. We therefore expected extinction 
probability to decrease over time.

Finally, in addition to sampling effort, we considered the 
potential effect of road densities on the species detectability, 
first through facilitation of site accessibility for the observ-
ers and second, because cross roads can be used as marking 
sites (Barja et al. 2004), which can lead to a higher detect-
ability. Because presence signs rely partly on track records 
in the snow, we considered month as a categorical variable 
to account for the variation in detection conditions due to 
weather variations across the survey months (Marucco 2009).

Last, we considered the initial occupancy probability as 
constant since only two sites were occupied in the first year 
of the study, which was not enough to assess the effects of 
covariates on this parameter.

Model fitting, selection and validation

We performed covariate selection using stochastic search 
variable selection (SSVS; George and McCulloch 1993, 
O’Hara and Sillanpää 2009). In brief, SSVS builds a model 
that includes all covariate combinations as special cases. In 
practice, this is achieved by adding binary indicator vari-
ables, ap equals 1 or 0, which allows the estimation of the 
regression parameter bp or excludes it by setting it to a con-
stant (Supplementary material Appendix 1 Table C1). In a 
Bayesian framework, we explored the model space generated 
by excluding or including covariates. The priors for regression 
parameters bp were written as (1 – w) Normal(0,0.0001)  w  
Normal(0,1) with w ∼ Bernoulli(0.5) therefore assuming a 

Table 1. Description and expected effects of covariates used to describe the occupancy dynamics of wolf in France.

Covariate Abbreviation Parameter Description
Expected 

effect Reference

Forest cover Forest Colonisation (g) Percentage of mixt, coniferous or 
deciduous forests cover

 Oakleaf et al. 2006, 
Fechter and Storch 2014

Farmland cover Agr Colonisation (g) Percentage of pasture lands and 
other farming activities cover

/– Glenz et al. 2001

Rock cover Rock Colonisation (g) Percentage of rock cover –
High altitude Halt Colonisation (g) Proportion of altitude higher than 

2500 m
– Glenz et al. 2001

Altitude Alt Colonisation (g) Mean altitude /– Llaneza et al. 2012
Falcucci et al. 2013

Distance to the closest 
barrier

Dbarr Colonisation (g) Minimal distance between a 
highway or one of the five main 
rivers in France

– Falcucci et al. 2013

Short distance occupied 
neighboring cells

SDAC Colonisation (g) Proportion of observed occupied 
contiguous cells

 Bled et al. 2011

Long distance occupied 
neighboring cells

LDAC Colonisation (g) Proportion of observed occupied 
cells within a 150 km radius 
without the contiguous cells



Year (continuous) Trend-year Extinction (e) Year as a linear effect – Marucco 2009
Sampling effort SEff Detection (p) Number of observers per site per 

year


Road density Rdens Detection (p) Percentage of site covered by roads 
Month-survey survey Detection (p) Occasion of survey (categorical) /– Marucco 2009
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priori that each covariate had a 50-50 chance of being pres-
ent in the model. We checked that the model space was well 
sampled by the SSVS and that we did not get stuck in a par-
ticular set of models. We used three different initial model 
configurations (with all covariates vs without any of the 
covariates vs a few covariates picked at random in the set of all 
covariates). We did not explore different priors as mixing and 
convergence were satisfying. Prior to model selection, we ran 
a Spearman test to check for correlations among covariates.

We used Markov chain Monte Carlo (MCMC) simula-
tions and parameter estimation. We ran three MCMC chains 
with a burn-in period of 2500 iterations followed by 10 000 
iterations on which we based our inference. We used posterior 
medians and 95% credible intervals to summarize parameter 
posterior distributions. To assess the effect of a covariate on a 
parameter, we set the other covariates to their mean value. We 
checked convergence visually by inspecting the chains and by 
checking that the R-hat statistic was below 1.1 (Gelman and 
Shirley 2011). We finally produced distribution maps of the 
latent states by using a posteriori means of the zi,k from the best 
model. To assess the fit of our final model, we used the poste-
rior predictive checking approach (Gelman et al. 1996) that 
has recently been applied to occupancy models (Broms et al. 
2016b) (Supplementary material Appendix 1 Fig. B1).

Data deposition

Data available from the Dryad Digital Repository: < http://
dx.doi.org/10.5061/dryad.g9s1d > (Louvrier et al. 2017).

Results

The effect of covariates on detectability and  
the dynamic of occupancy

The model best supported by the data had detection as 
a function of sampling effort, road density and occasion 
(month) and colonization as a function of forest cover, 
farmland cover, mean altitude, proportion of high-altitude 
and the number of observed occupied cells at a short 
and long-distance neighborhood (Supplementary mate-
rial Appendix 1 Table C1). This model appeared to fit the 
data adequately well (Supplementary material Appendix 1  
Fig. B1).

Initial occupancy probability was low, as expected since 
few sites were detected as occupied at the beginning of the 
study (Supplementary material Appendix 1 Table C2).

As predicted, forest cover had a positive influence on the 
probability that a site became colonized. The proportion of 
farmland cover within a cell also appeared to have a positive 
influence on this probability. Below 1500 m of mean alti-
tude, the probability that a site became colonized was close 
to zero, whereas above this limit the probability reached up 
to 0.07 (0.05; 0.11) (Fig. 2). This probability decreased with 
the high-altitude proportion in a site. Over time, the num-
ber of observed occupied neighboring cells increased at both 

short and long-distance (Supplementary material Appendix 1  
Fig. D1). If all of the 8 neighboring cells were observed as 
occupied, the probability that the target cell became colo-
nized was 0.48 (0.32; 0.58) compared to a colonization 
probability of 0.11 (0.08; 0.15) if the target site had only 
0 to 2 contiguous neighboring cells observed occupied. As 
this number increased, the probability that a site became 
colonized increased accordingly (Fig. 2).

Sites located within the Alps had the highest number 
of observed occupied sites at both short and long-distance. 
Colonization probability was the highest in this area  
(Fig. 3). The highest part of the Alps (i.e. sites with the 
greatest proportions of high-altitude) remained with a low 
colonization probability (Supplementary material Appendix 1 
Fig. D2). Overall, this probability remained higher than zero 
in mountainous areas and increased with time as the number 
of occupied sites increased (Fig. 3).

Finally, and as expected, detection probability varied 
according to the survey month with the lowest mean value 
of 0.17 (0.16; 0.18) in December and the highest value of 
0.25 (0.24; 0.26) in January (Fig. 4). As expected, detection 
probability increased when the number of observers per site 
increased but, in contrast with what we expected, decreased 
with increasing road density. The sensitivity analysis showed 
weak effects of variations in the prospection areas used to 
build the sampling effort, except for the number of observed 
occupied sites at long distance (Supplementary material 
Apendix 1 Fig. A3).

Distribution map

From 1994 to 2016, 10 918 presence signs were recorded by 
the network and used in our analysis. The species was initially 
spotted in 2 cells in 1994 and was detected in 188 cells in 
2016 (around 70-fold increase, see top panel in Fig. 5). This 
led to an apparent occupancy (proportion of occupied sites 
on the total number of sites in the study area) varying from 
0.001 in 1994 to 0.047 in 2016.

Accounting for both sampling effort and imperfect 
detection, we estimated the number of occupied sites as up 
to 10 (1; 19) in 1994 and up to 211 (195; 227) in 2016 (top 
panel in Fig. 5). Overall, the estimates were higher than the 
naïve estimates of occupancy. When we ignored the sam-
pling effort in the detection process, we found an estimated 
number of occupied sites equal to 2 (1; 4) in 1994 and up 
to 192 (180; 204) in 2016. Most discrepancies between 
the two models (accounting for vs. ignoring the sampling 
effort) were found at the early stage of the colonization 
process when the network of observers was implemented 
mainly in eastern France (compare bottom left and right 
panels in Fig. 5; see also Supplementary material Appendix 
1 Fig. D3). Accounting for the sampling effort allowed us 
to infer the species presence on sites that were not pros-
pected or prospected with a low sampling effort (top panel 
in Fig. 5).

Our results showed that in 1994 the species was found 
only in the southern Alps, and then actively colonized 

http://dx.doi.org/10.5061/dryad.g9s1d
http://dx.doi.org/10.5061/dryad.g9s1d
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towards the northern Alps at the beginning of the 2000s. The 
colonization process started to reach the Pyrenees and Massif 
Central area in early 2000, and the Vosges area in the very 
north-eastern part of France, at the beginning of the 2010s, 
indicating that the French wolf population is still in a phase 
of expansion west and northward from the alpine range. This 
led to an average expansion rate (i.e. number of occupied sites 
divided by the number of occupied sites the previous year) 
of 112% (100%; 128%) (Fig. 6). This expansion rate first 
decreased over time, from 225% (118%; 600%) at the early 
stage of the wolf colonization in 1994 to 103% (91%; 117%) 
in 2000 due to low number of occupied cells, then stabilized 
at 107% (98%; 117%) on average per year demonstrating 
that the population is still in an expanding phase mainly 
thanks to the colonization outside of the alpine range.

The model did not predict absence in places where pres-
ence signs were found (Fig. 7). Sites with high occupancy 

probability were mainly close to the sites where the species 
had been previously detected, mostly due to the effect of 
short-distance neighbors. Some sites had a high probability 
of being occupied ( 0.75), however the uncertainty associ-
ated with those predictions was also high (standard deviation 
[SD]  0.30). We found sites with high probability of occu-
pancy ( 0.75) with low uncertainty (SD  0.20), and some 
of those sites were observed as occupied in the following year 
because the model propagates information backwards in time 
and so zk is informed directly by zk  1.

Discussion

Determining favorable areas is often accomplished by 
building distribution maps using habitat suitability mod-
els (Mladenoff et al. 1999) or occupancy models (Marucco 

Figure 2. Relationship between the estimated colonization probability and (A) short-distance occupied neighboring cells, (B) long-distance 
occupied neighboring cells, (C) proportion of forest cover, (D) altitude, (E) proportion of farmland cover, and (F) site proportion of altitude 
higher than 2500 m.
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2009). However, these studies often rely on a static relation-
ship between the species of interest and its environment 
(Jedrzejewski et al. 2008). Here, we used dynamic site- 
occupancy models and brought new insights on the processes 
governing the dynamic of recolonization of a keystone car-
nivore species. By controlling for species detectability and 
heterogeneous sampling effort, our approach can be used 
to assess the distribution dynamics of any species based on 
opportunistic data, pending relevant information is gathered 
on the people collecting the data.

Model assumptions

Site occupancy models rely on several assumptions that need 
to be discussed (Mackenzie et al. 2003, 2006). First, the spe-
cies should not be detected when absent from a site (i.e. no 
false positives). This is unlikely to happen in our case since we 
did not account for presence signs that were rejected because 
they did not fulfill the standardized criteria used to avoid 
species misidentification (Duchamp et al. 2012). If doubts 
persist about the occurrence of false positives, this assump-
tion could be relaxed by using site-occupancy models that 
account for misidentifications (Miller et al. 2011, Rich et al. 
2013).

Second, detection histories of all sampling units are 
assumed to be independent. However, detection histories were 

likely dependent in space because of a non-homogeneous spa-
tial sampling effort inherent to opportunistic data. We partly 
accounted for this non-independence by quantifying the 
sampling effort. Furthermore, by accounting for the number 
of observed occupied neighboring cells, we made the detec-
tion history of a focal cell dependent partly on the detection 
histories of the neighboring cells. If the source of dependence 
is unknown, spatial autocorrelation can be modeled using 
geostatistical tools on occupancy or extinction/colonization 
parameters and also on detection (Bled et al. 2013).

Third, the status of a site should not change during 
primary occasions – the closure assumption (Rota et al. 
2009). We used the data provided within the winter period 
from November to March as a primary occasion because it 
corresponds to the most stable period in the social organiza-
tion of the packs. If movements or mortality occurred inside 
or outside of the sampling sites, it is likely, in our study, that 
the probability of occupancy in a given time interval did not 
depend on the occupancy status of a site in the previous time 
interval (Mackenzie and Royle 2005). In this situation of  
so-called random temporary emigration, the bias in param-
eter estimates is minimal, but occupancy should be inter-
preted as use of the sampling area rather than the proportion 
of area occupied by the species (Mackenzie et al. 2004).

Fourth, there should be no unmodelled heterogeneity in 
the model parameters. Regarding the detection probability, 

Figure 3. Maps of estimated colonization probability between 1995 and 1996, 2001 and 2002, 2009 and 2010, 2015 and 2016 from the 
best model (Table 2). Black dots represent detections made in 1995, 2001, 2009, and 2015.
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Figure 5. Up: number of 10  10 km cells observed (black), estimated occupied ignoring sampling effort (red) and estimated occupied 
accounting for sampling effort (blue) for each year from 1994 to 2016. Also displayed is the 95% credible interval for both estimates of the 
sampling effort. Down: maps of differences between estimates of occupancy from the model accounting for sampling effort and the one 
ignoring sampling effort. Dark red sites are sites that appeared estimated occupied by the model accounting for sampling effort but did not 
appear occupied once ignoring sampling effort. Both maps are associated with maps of the sampling effort on their right, for the years 1996 
and 2016.

Figure 4. Joint effects of road density, standardized sampling effort and occasion (month) on the species detection probability.
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some heterogeneity might remain due to a difference of 
detection in the presence signs, e.g. tracks vs hair (Graves 
et al. 2011). This was unlikely to occur in our study because 

the vast majority of presence signs are tracks. Regarding the 
colonization parameter, even though we had data on the 
number of killed preys during the hunting season, we did not 
have information on wild prey density at such a large scale. 
Therefore, we used characteristics of their habitats as a proxy 
for their presence (Jedrzejewski et al. 2008).

Besides the usual assumptions of occupancy models, we 
also had to deal with opportunistic data that are collected 
through non-standardized sampling protocols. To cope with 
opportunistic data, we defined a grid of spatial units that 
was overlaid on the map of detections/non-detections. We 
used 10  10 km cells as sampling units, a choice we made 
in agreement with what was recommended by the European 
Union (European Commission 2006) and also shown to be 
the best tradeoff between the species territory size and sensi-
tivity of the distribution to the size and shape of the unit cell 
(Marboutin et al. 2010). The average wolves’ territory size 
vary between 100 and 400 km² in western and central Europe 
(Ciucci et al. 1997, Mech and Boitani 2010, Duchamp et al. 
2012). Although these cells might not entirely cover wolves 
territories, Latham et al. (2014) studied the effect of grid size 
to assess wolf ’s occupancy and found that taking a large grid 
size may not be appropriate for areas with moderate to high 
wolf density as it can overestimate occupancy rate. On the 
other hand, if the size of the sampling unit is too small, then 

Figure 7. Maps of estimated occupancy (top) and associated standard deviation (bottom) for years 1996 and 2016. Black dots represent 
detections made in 1996 and 2016.

Figure 6. Growth rate (i.e. number of sites divided by the total 
number of sites the previous year) given for each year from 1994 to 
2016, on a log scale.
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there is a risk of having very few detections within a year, 
which would make the estimation of the detection probabil-
ity difficult.

Last, we assumed that observers were prospecting homoge-
neously inside the prospection area we assigned to them. This 
assumption may have been violated for two reasons. First, 
an observer might prospect more intensively near the center 
of the prospecting area, because it was defined as a home or 
work location, or near places where she/he already found 
presence signs (Duchamp et al. 2012). We also assumed 
that observers were prospecting homogeneously in time. 
However, observers may show different patterns in sampling 
frequency and some might not be prospecting during the 
months of winter. Finally, we assumed that once entered in 
the network, observers did not leave it unless we had infor-
mation indicating the contrary such as a change of job or 
social status. Consequently, we might have overestimated the 
number of observers actually prospecting in the network. 
We therefore recommend recording carefully the activity of 
observers within the network to get a realistic picture of the 
actual sampling effort (Beirne and Lambin 2013).

Effects of environmental covariates

We used road density as a proxy of human presence and 
found a negative influence on the detection probability. 
When defining the road density covariate, we accounted for 
all types of roads (except highways). Because many observers 
from the network are wildlife professionals (Duchamp et al. 
2012), main roads may not be used and accessibility to a site 
may consist mostly in dirt and forest roads or pathways. The 
negative influence could be explained by the fact that wolves 
tend to avoid roads (Whittington et al. 2005), therefore there 
might be fewer presence marks at sites with high road density. 
As expected, we found that detection probability increased 
when sampling effort increased, therefore highlighting the 
importance to account for imperfect detection when it is 
likely to be inhomogeneous in time and space. Finally, detec-
tion varied according to the month of the survey, which can 
be explained by the variability in snow conditions in the 
study area.

We found that colonization was mainly influenced by the 
number of observed occupied neighbors at short and long-
distances, showing that dispersal and competition for space 
with other packs is a key factor of the dynamic of occupancy. 
These results corroborate those of Adams et al. (2008) who 
showed that dispersal was the main component explaining 
wolf population dynamics. Several long-distance dispersal 
events have been documented across the alpine area (Wolf 
Alpine Group 2014) and in France (Duchamp et al. unpubl.). 
Further studies explicitly modeling dispersal processes could 
help to better predict wolves colonization by accounting for 
factors that could enhance or slow down the dispersal rate for 
instance (Broms et al. 2016a).

We found that mean altitude had a positive effect on 
colonization probability. Wolves are highly flexible and can 
live in various areas from maize cultures to high mountains 

(Kaczensky et al. 2013). Starting from central Italy (Lucchini 
et al. 2002, Fabbri et al. 2007), wolves reached the alpine 
range via the natural Apennine mountain corridor. Therefore, 
the effect of mean altitude may be related to the history of 
the wolves’ natural recovery process. However, we also found 
a negative effect of the proportion of altitude higher than 
2500 m, i.e. the higher the proportion of high-altitude, the 
less likely a site was to become colonized. Above 2500 m, 
vegetation turns to sparse vegetation with rocky covers and 
snow. In contrast, more forest cover associated with lower 
altitudes ( 2500 m) increased the probability that a site 
become colonized mainly because these habitats’ structure 
and composition are much more suitable to the presence of 
key prey species (Darmon et al. 2012). To a lesser extent, the 
effect of farmland cover was also found to have a positive 
influence on the colonization probability. Although pasture 
areas host domestic preys (Meriggi and Lovari 1996) and may 
influence wolf colonization, the farmland covariate refers to 
rural exploited landscapes usually located down the valleys or 
lowlands. As wolf recovery is increasing over time, dispersers 
do not have other choices than to fulfill free available space 
to colonize. The overlap between human range activities and 
wolf settlement then increases as the recovering process is 
going on. The inclusion of more explicit covariates related to 
pastoral activity, such as the number of sheep in space, may 
provide a better understanding of the interaction between 
domestic prey and wolf presence, but these were not avail-
able to us.

Trends in wolf recolonization

Colonization patterns have been studied during recent decades 
(Wabakken et al. 2001). It appears that in Scandinavia, 
wolves were showing a colonization process that is typical 
of species with high dispersal capacities and pre-saturation 
dispersal (Swenson et al. 1998). This process is character-
ized by single long leaps forward and as a consequence, the 
colonization front is less well defined (Hartman 1994) com-
pared to a stepping stone dispersal strategy. Wolves seem to 
follow a similar pattern in France (Fig. 6). This biological 
trait used by wolves is mainly known as a mechanism to avoid 
competition with other packs (Hayes and Harestad 2000). 
Once the area becomes saturated, dispersers may settle at 
unoccupied sites at long distance with higher risks of mor-
tality due to an Allee effect (Hurford et al. 2006, Sander-
son et al. 2013) or demographic stochasticity (Vucetich et al. 
1997). In line with Marescot et al. (2011) who estimated 
a positive rate of increase in abundance, we demonstrated 
that the spatial dynamic mechanism of the wolves’ natu-
ral recovery is still going on, particularly outside the alpine 
range both northward and westward. However, this recov-
ery appeared to slow down, mainly due to areas becoming 
saturated within the alpine range associated with the natural 
barrier along the Rhône valley slowing down dispersal and/or 
a recent increase in official wolf controls. We may expect an 
increase in occupancy once few new packs have settled apart 
the alpine range.
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We used dynamic occupancy models to assess the current 
and dynamic distribution of a species that is expanding since it 
returned; there is a temptation to aim at forecasting its future 
distribution. However, we emphasize the difficulty of achiev-
ing this objective because we could not incorporate the drivers 
that may appear relevant to explain future colonization events. 
For instance, now that wolves have settled in the alpine range 
and continue to expand, they are likely to encounter new envi-
ronments such as lowlands in the next few years, a landscape 
that may drive future colonization. Consequently, use of our 
model as a predictive tool should be considered in an adaptive 
framework, i.e. by updating the management rules and the dis-
tribution maps every year during the active colonization phase.

The outcomes of our analyses have important conse-
quences for managing animal species because their conserva-
tion status must be assessed partly through trends in their 
distributions (see art. 1 of the Habitats Fauna Flora European 
Directive). Dynamic occupancy models are therefore relevant 
tools to the decision-making process by providing maps and 
spatio-temporal trends. In the case of the wolf, these models 
can help in focusing the prevention of damage to livestock 
(Miller 2015). The identification of areas where the species 
may or may not occur along with the surrounding uncer-
tainty may be used to target specific sites and determine 
priorities for implementing mitigation measures.
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